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SUMMARY

An analytical solution is presented of problems for an elastic half-plane with a circular tunnel, which
undergoes a certain given deformation. The solution uses complex variables, with a conformal mapping onto
a circular ring. The coefficients in the Laurent series expansion of the stress functions are determined by
a combination of analytical and numerical computations. As an example the case of a uniform radial
displacement of the tunnel boundary is considered in some detail. It appears that a uniform radial displace-
ment is accompanied by a downward displacement of the tunnel as a whole. This phenomenon also means that
the distribution of the apparent spring constant is strongly non-uniform. ( 1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

In this paper the stresses and displacements in an elastic half-plane due to the deformation of a
circular tunnel are considered. The method used is the complex variable method.1 The boundary
conditions are that the upper boundary of the half-plane is free of stress, and that at the boundary of
the tunnel the displacement is prescribed. This is usually called the second type of boundary condition.
In order to solve the problem, a conformal transformation onto a circular ring is used, and in the
transformed plane the complex stress functions are represented by their Laurent series expansions.

In the classical treatises of Muskhelishvili1 and Sokolinikoff2 on the application of the complex
variable method in elasticity, the class of problems studied here, involving a multiply connected
region and conformal mapping onto a circular ring, is briefly mentioned, but it is stated that
‘difficulties’ arise in the solution of these problems, and it is suggested to use another method of
solution, such as the method using bipolar co-ordinates.3—5 In this paper it will be shown that
these difficulties can be surmounted, at least for the case of a circular cavity with a prescribed
radial displacement, by a combination of analytical and numerical analysis. The main difficulty
encountered in this procedure is that the boundary conditions do not immediately suffice to
determine the coefficients in the Laurent series expansions of the complex stress functions. It
appears necessary to also require that the coefficients of the series tend towards zero for large
values of the term counter, which can be considered to be a consequence of the convergence
criterion. In this way a closed-form solution is obtained, with an infinite number of terms.

The advantage of the complex variable method with respect to the method using bipolar
co-ordinates is that the complex variable method is of a more general character, enabling the
solution of problems for various types of boundary conditions. Another advantage is that it not
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only leads to solutions for the stresses, but also directly gives the displacements. It is not yet quite
clear to what extent the solution method presented here can be generalized, to other shapes of
tunnels, or to other types of boundary conditions, perhaps including gravity or buoyancy effects.
It can be expected, however, that these will not be trivial extensions.

The problem considered is an idealization of the ground loss problem,6 which may occur in
tunnel engineering practice when using a tunnel boring machine. Although the tunnelling process
may be executed very carefully, and appropriate engineering techniques may be applied to
minimize the deformations (for instance, the injection of grout into the soil surrounding the
tunnel) it remains of interest to study the deformations and stresses caused by a certain amount of
ground loss. A severe restriction of the present solution is that it applies only to a homogeneous
linear elastic material, which is a rather poor representation of soil or rock. The solution may be
used, however, as a first approximation, and as a reference case for (numerical) models on the
basis of more sophisticated material behaviour. Some typical results of the analytical solution are
that a marked difference is obtained for the apparent spring constant along the circumference of
the tunnel, and that any shrinking of the tunnel is accompanied by a downward displacement of
the tunnel as a whole.

STATEMENT OF THE PROBLEM

The problem refers to an elastic half-plane with a circular tunnel, see Figure 1. The upper
boundary of the half-plane is free of stress, and loading takes place along the boundary of the

Figure 1. Half-plane with circular tunnel

78 A. VERRUIJT



tunnel, in the form of a given distribution of displacements. The radius of the tunnel is denoted by
r, the depth of its centre below the free surface by h, and the cover by d, see Figure 1. The ratio r/h
will be considered as the basic geometrical parameter.

In the complex variable method,1,2,7 the solution is expressed in terms of two functions /(z)
and t(z), which must be analytic in the region R occupied by the elastic material (the half-plane
y(0 with the exclusion of the circular hole). The stresses are related to these functions by the
equations
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and the displacements are given by
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where k is the shear modulus of the elastic material, and i is related to Poisson’s ratio l by
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for plane stress. In this paper plane strain conditions are assumed.
The boundary conditions are that either the displacements or the surface tractions are

prescribed along the boundary. In the first case the quantity u
x
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y
is prescribed, which means

that the combination of functions on the right-hand side of (3) is given. In the second case it is
most convenient to express the boundary condition in terms of the integral of the surface
tractions, integrated along the boundary,
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It can be shown1 that this function is related to the complex stress functions /(z) and t (z) by
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where C is an integration constant. For the class of problems considered in this paper this
constant may be omitted, because it can be incorporated into a rigid-body motion of the entire
plane. It may be noted that the expressions in (3) and (7) are very similar, as they differ only
through the value of the factor i.

THE SOLUTION METHOD

Conformal mapping

It is assumed that the region R in the z-plane can be mapped conformally onto a ring in the
f-plane, bounded by the circles D f D"1 and D f D"a, where a(1, see Figure 2. This ring-shaped
region is denoted by c. The appropriate conformal transformation is

z"u(f)"!ih
1!a2

1#a2

1#f
1!f

(8)
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Figure 2. Plane of conformal transformation

where h is the depth of the centre of the cavity, and a is a parameter defined by the ratio (r/h) of the
radius and the depth of the cavity,

r
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(9)

It can easily be verified that the circle D f D"1 corresponds to the axis y"0, and that the circle
D f D"a corresponds to the circle x2#(y#h)2"r2. The origin in the z-plane is mapped onto
f"!1, and the point at infinity in the z-plane is mapped onto f"1, see Figures 1 and 2. If aP0
the radius of the circular cavity is practically zero, which indicates a very deep tunnel, or a very
large covering depth. If aP1 the covering depth is very small. For every value of r/h the
corresponding value of a can be determined form (9).

Because the conformal transformation function u(f) is analytic in the ring bounded by the
circles D f D"1 and D f D"a, the functions / (z) and t(z), which must be analytic throughout the
region R in the z-plane, can be considered as functions of f,

/ (z)"/ (u(f))"/ (f) (10)

t (z)"t (u(f))"t (f) (11)

and they are both analytic in the region c in the f-plane. This means that they can be represented
by their Laurent series expansions,
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These series expansions are assumed to converge up to the boundaries D f D"1 and D f D"a. The
point f"!i, which corresponds to infinity in the z-plane, deserves some special consideration. It
is assumed that the problems considered are such that the stresses and displacements are
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bounded at infinity, so that it may be assumed that the series also converge on the boundaries.
This implies that the state of stress at the tunnel boundary must be an equilibrium system.

The coefficients a
k
, b

k
, c

k
and d

k
must be determined from the boundary conditions. The two

main types of boundary conditions, given displacements or given surface tractions, are expressed

in terms of the functions / (z), t(z), and a term z/ @(z); see (7) and (3). When transforming these

conditions in terms of the variable f the term z/ @(z) needs special attention. Because /@(z) is
defined as d//dz (the accent denoting differentiation with respect to the variable indicated), the
derivative with respect to f can be written as
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It now follows that
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The character of the factor u (f)/u@(f) determines the mathematical difficulties involved in solving
boundary value problems for a certain type of region.

In the present case the conformal transformation is given by equation (8). Differentiation of this
expression with respect to f gives
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On a circle with radius o in the f-plane we have f"op, where p"exp(ih). Then f1 "op~1. This
gives
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In this case, of a circular tunnel, this factor appears to be relatively simple. For problems with
a tunnel of more complicated shape the factor may be so complicated that it practically prohibits
analytic solution of the problem.

Boundary conditions

The first boundary condition is that the upper boundary y"0 must be entirely free of stress.
With (7) this gives

y"0: /(z)#z/ @(z)#t (z)"0 (18)

When this condition is transformed to the f-plane its form is
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On the outer boundary D f D"1, the radius o"1. Then expression (17) reduces to the simple form
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The boundary condition (19) now gives, after some elaborations,
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The coefficients c
k
and d

k
can be solved from this equation, by setting the coefficients of all powers

of p equal to zero. The result is
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One-half of the unknown coefficients have now been expressed into the other half. If the
coefficients a

k
and b

k
can be found, the determination of c

k
and d

k
is explicit and straightforward.

The remaining unknown coefficients a
k
and b

k
must be determined from the boundary condition

at the cavity boundary.

The second boundary value problem

In this paper the second boundary value problem is considered, in which the displacement is
prescribed along the tunnel boundary. The boundary condition at the corresponding boundary in
the f-plane is
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where G(f) is a given function, the precise form of which depends upon the displacement
distribution along the tunnel boundary in the z-plane. Points on the circle D f D"a will be denoted
by D f D"ap, where then p"exp(ih). Along this circle the value of the first factor in the the second
term of (25) is, with (17)
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In contrast to the boundary condition at the outer boundary, where this factor was of a very
simple form, see (20), this factor now is of a complicated form, especially because of the
appearance of the term (1!ap) in the denominator. In order to eliminate the difficulties caused
by this term the boundary condition (25) is rewritten in the form
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where
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It may be noted that the factor (1!ap) is never equal to zero.
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The function G @(ap), which defines the boundary condition at the tunnel boundary, depends
upon the polar co-ordinate h. It is now assumed that this function can be written as a Fourier
series,

G @(ap)"
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A
k
pk (29)

It can be expected that for all problems of practical significance such an expansion is possible. An
example will be presented below.

Elaboration of the left-hand side of equation (27), on the basis of the Laurent series expansions
(12) and (13) and the expression (26), is a laborious but basically simple task, leading to sums of
positive and negative powers of p. The resulting equation must be satisfied for all possible values
of p, which will be the case if the coefficients of all powers of p are equal in the left- and right-hand
side of the equation. The system of equations for the coefficients a
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obtained in this

way is of a rather complicated nature, with four levels of coefficients (e.g. a
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appearing in the equations. However, after elimination of the coefficients c
k
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equations (22)—(24), the system of equations turns out to be less complicated, with only two levels
of coefficients. The final result is that the coefficients must satisfy the equations
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From these two equations the coefficients can be determined recursively. If the values a
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Thus, all the coefficients of the Laurent series have been determined, except for a
0
, which also

influences all other coefficients. It seems that this coefficient remains undetermined by the
boundary conditions specified above. The fact that the coefficient a

0
is undetermined is perhaps

one of the difficulties mentioned by Sokolnikoff,2 which at the time may have discouraged further
elaboration of this type of problem by the complex variable method. A way out of this difficulty is
by requiring that the series expansions of the functions / and t, see (12) and (13) converge at the
point f"1, which corresponds to z"R. A necessary condition for this to be the case is that the
coefficients a

k
and b

k
tend towards zero if kPR. It can easily be seen that the homogeneous form
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zero, which will be the case only for the correct starting value of a
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. As the system of equations is

linear, the correct value of a
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can be determined by first assuming a
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"0, then calculating (for

instance numerically) the limiting value of a
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for kPR, repeating this calculation for an initial
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value a
0
"1, and then determining the correct value of a

0
by linear interpolation such that a

k
P0

for kPR. It has been found, by elaborating certain specific cases, that this procedure indeed
leads to satisfactory results, in which the series expansions converge throughout the entire region
c in the f-plane. As the Laurent series expansion is unique it follows that the correct solution has
been obtained.

EXAMPLE: UNIFORM RADIAL DISPLACEMENT

As an example the problem of a uniform radial displacement of magnitude u
0

at the tunnel
boundary is considered. If the displacement u

0
is considered positive in inward direction the

displacement components at the tunnel face are
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which can be combined in the complex equation
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With (8) and (9) this can be expressed in terms of the value of f"ap along the boundary in the
f-plane,
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This is the function G (ap) as defined in (25). It now follows that the function G @(f), as defined by
(28), is
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It appears that in this case the boundary function only contains two terms of order p0 and p1. The
only two non-zero coefficients in the Fourier expansion (29) are
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The determination of the coefficients a
k

and b
k

may now proceed in the way outlined in the
previous section.

The coefficients a
1
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1

can be determined from equations (32) and (33). With (38) this gives
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The solution of this system of equations is
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where it has been assumed, on the basis of a consideration of symmetry, that all the coefficients
are purely imaginary, so that for all coefficients aN

k
"!a

k
. Now that the coefficients a
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and
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have been determined, the other coefficients can be determined successively, using equations
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(30) and (31). The value of the very first constant a
0
can be determined from the condition that the

coefficients tend towards zero if kPR.
For the calculation of the coefficients a

k
and b

k
a simple computer program has been written.8

The procedure described above is implemented, in which first the value of a
0

is determined such
that the coefficients a

k
and b

k
tend towards zero for kPR. In the program the limiting value of

the coefficients for kPR is approximated by the value for k"10,000. Next a
1

and b
1

are
determined from (39) and (40), and then the remaining coefficients a

k
and b

k
are determined from

(30) and (31). Finally, the coefficients c
k

and d
k
are determined from (23) and (24).

This procedure has been found to work well, although the number of terms needed for
convergence may turn out to be rather large (about 100 or even 1000), if the radius of the tunnel is
very large (say r/h"0·99 or r/h"0·999). For reasonably small values of the radius, say r/h(0·5,
the series converge with 20 terms or less see Table I. Convergence is supposed to have
been obtained if the maximum value of the last term of the series is smaller than 10~14 for all
values of f.

An interesting aspect of the solution is that it is found, by considering the behaviour of the
solution in the vicinity of the point f"1, that the stresses tend towards zero at infinity, but that
the displacement at infinity tends towards a constant value, not equal to zero. Thus, a uniform
contraction of the tunnel, with its centre being fixed, appears to lead to an upward displacement
at infinity. This means that in real tunnelling problems, where the centre of the tunnel is not fixed
and the point at infinity can be considered to be the non-moving reference, the tunnel
will undergo a downward displacement as a whole. This displacement is shown graphically in
Figure 3 for various values of l and r/h. The displacement of the top and bottom of the tunnel can
be easily related to the displacement of its centre by v

5
"v

#
!u

0
and v

"
"v

#
#u

0
. The result that

a contraction of the tunnel leads to a downward average displacement means that in a numerical
model for this type of problem care must be taken to allow for such a displacement. If uniform
radial displacements are simply imposed as a boundary condition, without the possibility of a free
vertical displacement, a force of unknown magnitude may be generated in the numerical solution
in order to keep the tunnel in its place.

The downward displacement of the tunnel also means that the displacement of the bottom of
the tunnel is smaller than the displacement of its top. This is a consequence of the fact that the
stiffness of the material above the tunnel is smaller than the stiffness of the material below it. This

Table I. Number of terms needed for convergence

r/h n

0·1 7
0·2 8
0·3 10
0·4 11
0·5 13
0·6 16
0·7 19
0·8 25
0·9 36
0·99 112
0·999 342
0·9999 1039
0·99999 3155
0·999999 9568
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Figure 3. Vertical displacement of tunnel

also means that the apparent spring constant (the ratio of stress and displacement) is not constant
along the tunnel boundary. This is shown in Figure 4, for l"0·5 and l"0. The dotted circle
indicates the uniform spring constant 2k/r, which applies to a contracting circular tunnel in an
infinite elastic medium. The present solution reduces to this value if r/hP0. The low value of the
apparent spring constant near the top of the tunnel has long been recognized by professional
engineers, and has been incorporated into the German recommendations for the analysis of the
tunnel lining.9 The relatively high values near the bottom of the tunnel are not recognized in these
recommendations, however.

The displacements of the entire field are illustrated, for the case l"0 and r/h"0·8 in Figure 5.
It can be seen from this figure that the displacement of the bottom of the tunnel is downward, in
spite of the upward relative displacement due to the contraction of the tunnel. This result is in
agreement with those shown in Figure 3.

An interesting quantity is the total volume change *» at the surface. For an incompressible
material (l"0·5) this must be equal to the total ground loss at the tunnel circumference. For
a soil saturated with water this is the undrained case.6 If the material is not incompressible, an
approximate solution of the problem10 has indicated that the volume change at the surface may
be more than the ground loss of the tunnel, by a factor 2(1!l). The present solution allows to
verify both results. It appears, by numerical calculation of the volume below the settlement
through for various values of r/h, that in the undrained case (l"0·5) the two volumes are indeed
identical, with a relative error of about 0·00001. For other values of l the volume change at the
surface is indeed more than the ground loss, but not so much as predicted by the approximate
solution, except for small values for r/h, see Figure 6. The result10 that the drained volume change
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Figure 4. Spring constants along the tunnel boundary, r/h"0·5

Figure 5. Displacements: l"0, r/h"0·8

at a surface may be considerably larger than the undrained volume change is confirmed by the
analytical solution of this paper.

As a final result, Figure 7 shows the contours of the isotropic stress p
0
"(p

xx
#p

yy
)/2. The

contour interval is 0·1ku
0
/h, and the heavy contour is for p

0
"0. The left-half on the figure shows

the contours according to the exact solution presented in this paper. The right-half of the figure
shows the contours for an approximate solution.10 For values of r/h smaller than about 0·5 the
approximate solution appears to be reasonably accurate. For larger values of r/h the differences
with the approximate solution are increasingly unacceptable.

CONCLUSIONS

It has been shown that the complex variable method can be used successfully for the solution of
elasticity problems for a half-plane with a deforming circular tunnel. By using a conformal
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Figure 6. Relative volume change

Figure 7. Isotropic stress: l"0, r/h"0·5

mapping onto a circular ring, it is found that the coefficients of the various terms in the Laurent
series expansions of the complex stress functions can be determined from the boundary condi-
tions. In this solution it is required to determine one of the coefficients such that convergence of
the Laurent series is ensured. This condition can be satisfied by numerically evaluating the
coefficients, and then requiring that the coefficients tend towards zero.

The solution method has been illustrated by calculating the deformations for the case of
a uniform radial displacement of the tunnel boundary. The number of terms needed for sufficient
accuracy depends upon the geometry, in particular the relative magnitude of the diameter of the
tunnel.
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