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TECHNICAL NOTE

Surface settlements due to deformation of a tunnel in an elastic half
plane
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INTRODUCTION

Deformations of a tunnel may result in settlements
of the ground surface. In engineering practice these
surface settlements are often described by empiri-
cal formulae, based upon field observations, for
instance a normal (Gaussian) distribution curve
(Peck, 1969; Attewell & Woodman, 1982). In this
note an approximate analytical solution is presented,
considering the soil as a linear elastic material.
Although it is realized that this is a very poor
schematization of the real behaviour of soils, an
elastic solution may well serve to investigate some
of the characteristics of the resulting fields of stress
and strain, and it may also serve as a reference for
more refined (numerical) computations.

Two basic deformation mechanisms of the
tunnel are considered: a uniform radial displace-
ment (representing, in first approximation, the
ground loss that may occur during construction
of the tunnel), and an ovalization of the tunnel,
see Fig. 1. Even though in practice the tunnelling
process may be executed very -carefully and
appropriate engineering techniques may be applied
to minimize the deformations, for instance the
injection of grout into the soil surrounding the
tunnel, it remains of interest to study the defor-
mations and stresses caused by both ground loss
and ovalization.

The method used is an extension of a method
suggested by Sagaseta (1987) for the case of
ground loss in an incompressible soil. The starting
point is the solution for a singularity at a point of
an elastic half plane (at the axis of the tunnel). By
adding the image solution for a singularity at a
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Fig. 1. Ground loss and ovalization of a tunnel

point located symmetrically above the soil surface,
the shear stresses at the surface are made equal to
zero. In order to balance the normal stresses at the
surface, a third solution is added, by solving a
Boussinesq-type problem. The approximation in
establishing the solution is that, in balancing the
normal and tangential stresses on the surface, the
presence of the tunnel, with its prescribed dis-
placements, is disregarded. Although an exact
solution might well be obtainable by the methods
outlined by Mindlin (1939), using bipolar coordi-
nates, such a solution is very complicated. The
present approximate solution will be seen to be
very simple and easy to apply.

The solution given in this technical note is a
generalization of Sagaseta’s solution in that it gives
the solution for the case of ground loss not only
for the incompressible case (with Poisson’s ratio
equal to 0-5), but for arbitrary values of Poisson’s
ratio, and that it includes the effect of ovalization.
The process of ovalization has been studied before
for a tunnel in an infinite elastic medium (Muir
Wood, 1975). Here the surface displacements for a
tunnel in a semi-infinite medium are considered, as
well as the displacements and stresses throughout
the half space.

THE SOLUTION
The (approximate) solution of the problem is
supposed to consist of three parts. The first two
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parts are singular solutions from the theory of
elasticity in the points x =0, z=h and x =0,
z=—h, (Fig. 2). In these solutions the displace-
ments are of order O(1/r), so that they correspond
to the removal of a finite volume, and the stresses
are of order O(1/7%). They are well-known basic
solutions from the theory of elasticity (Timoshenko
& Goodier, 1951). All other possible singular
solutions are of larger negative orders of 7, and
thus will be small compared to the present one if
the radius R of the tunnel is small enough.

Taken together, the expressions for the displace-
ment components u, and u, for the singular parts
of the solution and their images are
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where ¢ and J are parameters indicating the relative
displacement of the tunnel surface, for the uniform
radial displacement case (¢) and the ovalization
case (0) respectively. In these solutions z; =z — A,
zp =z+ h, and r; and r, are the distances from the
singular point and its image (Fig. 2). It can easily
be verified that these solutions satisfy the basic
differential equations from the theory of plane
strain elasticity.

Because of the symmetry of these two solutions,
the shear stress o,, and the vertical displacement
u, will be zero at the surface z=0. The normal
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Fig. 2. A singularity and its image

stresses 0, induced by the two singular solutions
are equal, and add up to
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where u is the shear modulus of the elastic
material, and m is an auxiliary elastic constant,
related to Poisson’s ratio by
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In order to satisfy the boundary condition that the
normal stress o,, = 0 at the surface z =0, a third
solution must be added, which must balance the
stress distribution ¢(x). This third part of the
solution is the solution of a Boussinesq problem,
for the half plane z>0, with the boundary
conditions
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Problems of this type can be solved most
conveniently by using Fourier transforms (Sneddon,
1951). It can be shown that, if the load function is
even, g(—x) = q(x), the solution of the problem
with the boundary conditions (5) can be written as

Uy = J~Oo C(1 — maz) exp (—az) sin (ax) da (6)
0

u, = _J C(1 + m + maz) exp (—az) cos (ax) da
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In this case, with the function g(x) defined by (3)
the function C is found to be
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Substitution of this result into equations (6) and (7)
gives, after evaluation of the Fourier integrals, using
known integrals from Bateman (1954) and some
results that can easily be derived from them,
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The complete solution of the problem is the sum of
this solution and the expressions (1) and (2).

All stresses and strains can be directly derived
from the solution given above. The vertical
displacement of the surface z =0, denoted as uy,
is of particular interest. Taking z =0 in equation
(11) gives
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This is the total settlement of the surface, because
for z =0 the two singular solutions in equation (2)
cancel.

The shape of the two settlement functions is
shown in Fig. 3. The solid line is the settlement
curve for the first term, due to the ground loss.
The dashed line is the settlement curve for the
second term, due to the ovalization of the tunnel.
It appears that the width of the settlement trough
is considerably smaller for the ovalization case
than for the ground loss case. This may be
one explanation for the rather narrow settlement
troughs usually observed in tunnelling practice.
Another explanation may of course be that the soil
behaviour is non-linear, exhibiting plastic effects.

The factor (m+ 1)/m in equation (12) can also
be written as 2(1 — v). For v = 0-5 this factor is 1.
For that value of v the first term of the solution
has been presented earlier by Sagaseta (1987).

The total area (A) of the settlement trough is
found by integrating equation (12) from —oo to
+o0o. The result is

m+1
m
For v = 0-5 this is precisely the ground loss, 2e R,
a result also mentioned by Sagaseta (1987). It is

A= 2enR? = 4(1 — v)enR? (13)
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Fig. 3. Surface settlements

interesting to note that for other values of v the
total area below the settlement curve is larger than
the ground loss. This initially somewhat surprising
result must be attributed to the deformations at
infinity. For v = 0 the total area is double that for
an incompressible material, and thus Sagaseta’s
solution will in general lead to an underestimation
of the settlement under drained conditions. It may
also be concluded that it is of great practical
importance to keep the ground loss as small as
possible, in order to prevent surface settlements, a
fact long recognized in tunnel construction.

The shape of the settlement curve is indepen-
dent of v, but its values increase if v decreases
from 0-5 to 0. In a consolidating, porous, elastic
medium this would mean that the immediate
settlement is equal to the ground loss, with the
consolidation settlement leading to a gradual but
approximately conformal increase of the settle-
ments. This will be the subject of a subsequent
publication.

It may also be interesting to note that the
average value of the ovalization term in the
solution is zero. In the zone x </ there is a
settlement, but in the zone x > / there is some
heave, and the two of these appear to balance on
average.

In order to assess the accuracy of the approxi-
mation, the total displacements at the tunnel’s
radial circumference may be determined. The first
term of the solution represents the constant radial
displacement due to the singularity in an infinite
medium. The other two solutions disturb this
displacement, and the relative magnitude of this
disturbance is a measure of the accuracy of the
solution. This can be evaluated by comparing the
radial displacements at the tunnel face due to the
second and the third parts of the solution with
those due to the first part. It appears that the error
is less than 10%, provided that the radius of the
tunnel is less than one half of its depth.

STRESSES

The strain components can easily be derived by
differentiation from the expressions for the dis-
placements, and then the stress components can be
obtained with the aid of Hooke’s law. The isotropic
stress 0p = %(O'xx + 0.,) is found to be, for instance,
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A graphical representation of the isotropic stress oy
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is shown in Fig. 4. The left half of the figure shows
contours of gy for the ground loss problem, and the
right half shows contours of oy for the ovalization
problem. The thick lines indicate the contours for
09 = 0, and the characters + and — indicate zones
of tension and compression respectively. The con-
tour intervals are 0-2ue(R/h)’> and 0-2ud(R/h)*/
(1 —v). Although in Fig. 4 it has been assumed
that R/h = 0-5, the contours are valid for any value
of R/h. It is interesting to note that in the case of
ground loss the stresses around the tunnel are all
compressive, whereas in the case of ovalization
there are zones of tension above and below the
tunnel. The construction of contours of other stress
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Fig. 4. Contours of isotropic stress

components is a relatively simple and straight-
forward exercise.

CONCLUSIONS

It appears to be possible to derive approximate
analytic solutions for two important cases of tunnel
deformation in an elastic soil: a uniform radial
displacement due to ground loss, and an ovaliza-
tion of the tunnel. Simple analytical expressions
can be given for the displacements at arbitrary
points of the half plane, and for the stress com-
ponents.
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Erratum

In equations (1) and (2) : k =v/(1 —v).
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Details of the analysis, and an alternative

The problem

The paper gives an approximate analytic solution for a tunnel in a homogeneous elastic half
space, caused by ground loss and ovalization. The two basic processes are illustrated in
figure 1. This note presents some additional material and derivations.

Figure 1: Ground loss and Ovalization of a tunnel.

Basic solution for ground loss

The first solution, describing the ground loss, is a purely radial displacement, decreasing
inversely proportional to the distance r from the point x = 0,y = 0.
eR?
Up = ——, (1)

r

where u, is the displacement in radial direction, and ¢ is a parameter indicating the relative
displacement at the circumference of a tunnel of radius R. The total ground loss (per unit
length) is 2emrR?, and the relative ground loss, per unit volume of the tunnel, is 2¢. The
horizontal and vertical components of the displacement are

R2
up = — 2 2)
”
eR?y
Uy = — 2 ) (3)

It can easily be verified that these expressions satisfy the basic differential equations for a
homogeneous isotropic linear elastic material, deforming under plane strain conditions,
de  OPup O*u,
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where e is the volume strain,
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and the elastic parameter m is defined by
1
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where v is Poisson’s ratio.
In this case the volume strain appears to be zero,

e=0. (8)

The stresses can be determined using Hooke’s law for the case of plane strain,
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Basic solution for ovalization

The basic form of the second type of singularity, describing the ovalization, is

SR%x(2? — ky?)

uy = PP W) (15)
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Uy = %, (16)

where 0 is a measure of the degree of ovalization (the relative increase and decrease of the
radius R in the two coordinate directions), and where k is an elastic parameter, defined as

v A
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k= (17)

Again it can be verified that this solution satisfies the basic differential equations (4) and (5).



In this case the volume strain is
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The stresses are, with equations (9), (10) and (11),
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Solution for two singularities

x
Y
Figure 2: A singularity and its image.
Superposition of two singularities, with ground loss and ovalization, at y = h and at y = —h,
see figure 2, leads to the displacement field
T T x(x? — ky? x(x? — ky?
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where i3 = y — h and y2 = y + h, and r; and ry are the distances from the singular point
and its image, see figure 2, so that
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The stresses due to the two singularities are
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At the surface y = 0: y1 = —h and y2 = h, so that it follows from equations (23) and (27)
that on that surface uy, = 0 and 0., = 0. This is a consequence, of course, of the symmetry
of the solution. The normal stresses o, induced by the two parts of the solution are equal,
and add up to
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In order to satisfy the boundary condition that the normal stress oy, = 0 at the surface
y = 0, a third solution must be added, which should balance the stress distribution ¢(z).

y=0 : o, =q(r) = —4pcR?

(28)

The third part of the solution

The third part of the solution is a problem for an elastic half plane with zero shear stresses

at the surface y = 0, and normal stresses
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This is a Boussinesq problem, which can be solved using the Fourier transform method.

y=0 : oy =—q(x) =4peR

(29)

The Fourier transform method

The Fourier transform method for solving problems of elasticity for a half plane (Sneddon,
1951) leads to the general type of solution

Uy = / C(1 — may) exp(—ay) sin(azx) da, (30)
0
Uy = —/ C(1 + m + may) exp(—ay) cos(ax) da, (31)
0
where, as before, m is defined by
1
R (32)

It can easily be verified that these equations satisfy the basic differential equations (4) and
(5).

It follows from equations (30) and (31) that
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Using these equations the stresses can be expressed as
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Ground loss

In the present problem the boundary condition for the stress oy, is, with equation (29), and
considering the ground loss case only,

o 2_p?

_n . Yyy _ 2 T —
With equation (37) this leads to the condition
e 2eR?> 2?2 —h?

Using the inversion theorem for the Fourier cosine integral (Sneddon, 1951) it follows that
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Ca= o @ cos(ax) dz. (41)

Using the Fourier transform (114) from the Appendix gives
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Substitution into the expressions (30) and (31) for the displacements now gives
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These integrals are all given in the Appendix. The final results are, using the definition of
m, see equation (32),
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where yo =y + h and 73 = 22 + (y + h)2.
With equation (42) the expressions for the stresses become
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All the integrals in these expressions are also given in the Appendix. This gives
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Ovalization

For the ovalization case the boundary condition for the stress oy, is, with equation (29) and
e=0,
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= = 53
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Using the inversion theorem for the Fourier cosine integral (Sneddon, 1951) it follows that
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This integral is determined in the Appendix, see equation (116). In this case the result is
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in which the factor 2/(m + 1) can also be written as (1 —2v)/(1 — v).
Substitution of (56) into the expressions (30) and (31) for the displacements now gives
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The Fourier integrals in these expressions are given in the Appendix. This gives
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With equation (42) the expressions for the stresses become
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All the integrals in these expressions are also given in the Appendix. This gives
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An alternative solution for ovalization

It has been observed by Strack (2002) that in the solution for the ovalization case presented in
the paper considered above, the tangential displacement u; does not vanish at the boundary
of the cavity, in contrast with his complex variable solution. For the purpose of comparison
an alternative may be used, in which u; = 0 along the cavity boundary. This alternative is

Figure 3: Cartesian and polar coordinates

presented here.
The general solution for ovalization of a circular cavity in an infinite elastic plane is, in
polar coordinates, see figure 3,

BR*(m+1) DR*

u =4 + } cos 20, (67)
mr 3r3
BR?> DR*
ug = {— + ——}sin26, (68)
mr 3r3

where, as before, m = 1/(1 — 2v).
The condition that u; = 0 for r = R gives
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m

The solution now reduces to
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The relation between polar coordinates and cartesian coordinates is
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With
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It can easily be seen that
r=R, y=0 : up, =0R, uy =0, r=—-R, y=0 : up = —0R, uy =0,
=0, y=R : up, =0, uy =—0R, =0, y=—R : up, =0, uy =60R,

which is in agreement with the assumed ovalization of the circle of radius R.
It follows from equations (75) and (76) that
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Using these relations the stresses are found to be
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Figure 4: A singularity and its image.

Solution for two singularities

Superposition of two of these ovalization singularities, at y = h and at y = —h, see figure 4,
leads to the displacement field

_ 6R%z {i yi —a®  R*(3yi —2?)

Y= +2 12 B ri r$
1 2 _ .2 R2 3 2 _ .2
+_2 myQ 4$ _ ( y26 €z )}, (89)
T3 2 T3
. R {y_l yi(yi —2®) | RPyi(y? —32?)
Y m+2 Lr? Til 3
2 _ .2 R2 2 3 2
+y_§+my2(y24 z%) yz(y26 x )}, (90)
r5 Ty Ty
where y1 =y —h, yo =y + h, 72 = 22 + 9% and 73 = 22 + 2.
The stress field for these two singularities is
oux _ OR? { 222 (2% — 3y?) N 3R%(z* — 62%y? 4+ y})
2 m+2 r$ r$
2{E2{E2—32 3R2 4—622+4
227 - yz) | SRz L 92)}, (o1)
Ty T3
oy OR? {m2y%(3x2 —y})  3R*(x' —62%yT + i)
2 m+2 r$ r$
2232_2 3R2 4—622+4
o 22 v y3)  3R(x L 92)}, (92)
T3 T3
Owy __ ASR? {mxyl (@2 —yi) | 3Rz (a® — y7)
2 m+2 r$ r$
ma 2 _ .2 3R2 2,2
n yz(ﬂf6 va) | xyz(g: Y2) } (93)

T3 T3

At the free surface y = 0, so that y1 = —h, yo = h and r? = r2 = 22 + h%. Tt then follows
that the vertical displacement u, and the shear stress o, on that surface vanish,



y=0 : o3y =0. (95)

This is a consequence of the symmetry of the problem, of course.
The vertical normal stress on the surface y = 0 is found to be

y=0 : oy =2uf(z), (96)

where now

20R? 2h%(h? — 322)  3R%(2* — 622h% + h?)

f@) = {m (W2 + 22 CETE b (o7)
This can also be written as

20R? h? ht

1@ = {_Gm(hz’ T2 T e e
3R? 24R?h? 24R%*h*
+ - + } (98)
(W2 + 222 (h2+22)3 ' (h2+a2)*

Written in this form the numerators no longer contain terms dependent upon x. This makes
the Fourier integrals somewhat easier to determine.

The third part of the solution

The third part of the solution is a problem for an elastic half plane with zero shear stresses
at the surface y = 0, and normal stresses

y=0 : oy =—2uf(x). (99)

This is a Boussinesq problem, which can be solved using the Fourier transform method.
With equation (37) this leads to the condition

m/ooo Cacos(az)da = —f(x). (100)

Application of the inversion theorem for the Fourier cosine integral (Sneddon, 1951) now
gives

2 o0
=—— da. 101
Ca — /0 f(z) cos(az) da (101)
Using some of the Fourier integrals derived in the Appendix the value of C' is found to be
20 R? R? 9

Although this form may be used to derive the displacements and stresses for the third part
of the solution, it is assumed here that the radius of the tunnel is small, R/h < 1. In that
case equation (102) reduces to

2

20R
C= R 2ahexp(—ah). (103)

This is the same solution as obtained in the original problem, see equation (56), except that
the factor m + 1 in the denominator must be replaced by m + 2.
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It follows that the additional expressions for the displacements in this case are

_45R2:ch{y_2 n my(z? — 3y2)2}

- 104
v m+ 2 T% 9 1o
25 R2h 243 32° — y3
. {m+1)? 4y2+2mw}, (105)
m+ 2 T3 "2
And the expressions for the stresses are
ve  AmOR2h [ys(322 — 13) | By(a* — 62793 + yi
Ozx _ 4m {y2( xr : Y3) i y(x 5292 92)}, (106)
2IUJ m + 2 T2 T2
oy AmIR%h {y2(3x2 —y3) _ 3yle' — 6273 + yé)} (107)
2u  m+2 8 3 ’
Ory  A8mIR?h wyys(2® — 13) (108)
21  om+2 Tg '
Reference

O.E. Strack, Analytic Solutions of Elastic Tunneling Problems, Ph.D. Thesis, Delft, 2002.
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APPENDIX : SOME INTEGRAL TRANSFORMS

In this appendix a number of integral transforms are assembled, mainly from the literature.
Many of these integrals are used in this paper.

A well known Laplace transform (Churchill, 1972), which can easily be derived by using
partial differentiation, is

S

, 109
s2 4+ a? (109)

/00 cos(at) exp(—st) dt =
0

By a simple change of notation this integral can also be written as a Fourier cosine transform,

o h
/0 exp(—ah) cos(azx) da = e (110)
Using the Fourier inversion theorem (Sneddon, 1951), it now follows that
z/OOLCO( )dz = exp(—ah) (111)
7 ) Wi s(ax) dr = exp(—ah),
or
/Oo L cos(az)dz = = exp(—ah) (112)
—_ ar)dr = — exp(—ah).
s h2ta? on P
Differentiation of (112) with respect to h gives, after division by —2h,
e 1 T
) m COS(O[CC) dx = m(l —+ O[I’L) exp(—ah). (113)
Because h? — 2% = 2h? — (h? 4 2?) it follows from (112) and (113) that
© hZ 2 T
‘/0 m COS(O[CC) dr = 7 exp(—ozh) (114)
Differentiation of (113) with respect to h gives, after division by —4h,
e 1 T 9
/0 (GRS cos(ax) dx = W[3 + 3ah + (ah)] exp(—ah). (115)
Because h? — 3x? = 4h? — 3(h? + 2?) it follows from (113) and (115) that
® h? - 322 Ta?
‘/0 m COS(O[CC) dr = E exp(—ah) (116)
Differentiation of (115) with respect to h gives, after division by —6h,
= 1 il 2 3

Now returning to the second integral, eq. (110), it follows, by differentiation with respect to
h, that

h? — 22

T (118)

/ a cos(ax) exp(—ah) da =
0

12



Differentiating this equation once more with respect to h gives
> 2h(h? — 322
/0 o? cos(ax) exp(—ah) da = w

It may be noted that (118) and (119) are the inverse Fourier transforms of (114) and (116).
Differentiating equation (119 with respect to h gives

(119)

oS} h4 _ h2 2 4
/0 o® cos(ax) exp(—ah) da = ( (h26+ ;32;_ ) (120)
Another well known Laplace transform is
/O sin(at) exp(—st) dt = ﬁ (121)
Written in the notation of a Fourier sine transform this integral is
/0 sin(ax) exp(—ah) da = ﬁ (122)
Differentiation with respect to h gives
e 2h
/0 asin(az) exp(—ah) da = m (123)
Repeating the differentiation with respect to h gives
e 22(3h% — 22
/0 o’ sin(ax) exp(—ah) da = H (124)
Another differentiation with respect to h gives
° 24zh(h? — 22
/0 o® sin(ax) exp(—ah) da = H (125)
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