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Abstract--An analytical solution is given of the class of problems of an elastic half plane with a 
circular cavity, loaded on the cavity boundary. The solution uses complex variables, with a conformal 
mapping onto a circular ring. The coefficients in the Laurent series expansions of the stress functions 
can be expressed into a single constant by a system of recurrent relations, obtained from the 
boundary conditions. The remaining constant can be determined from the requirement of con- 
vergence of the series. For the case of a uniform radial stress at the cavity boundary the solution 
can be given in closed form, confirming known results for the stresses, but also giving simple explicit 
expressions for the displacements, (" 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Some decades ago the complex variable method was a popular method for the derivation 
of solutions of plane elastostatic problems (Muskhelishvili, 1953 ; Sokolnikoff, 1956 ; Timo- 
shenko and Goodier, 1970). The method was especially successful for problems for regions 
that can be mapped conformally onto a circle or a half plane by relatively simple functions. 
For problems of multiply connected regions, such as problems of stress concentrations in 
plates with cavities, the method has been used with some success for problems involving 
circular or elliptical holes in infinite plates. However, in the more general case of problems 
for regions bounded by two eccentric circles, it is stated (Sokolnikoff, 1956, p. 301) that the 
"solution of the resulting systems presents difficulties" and it is suggested to use other 
methods of solution, such as the method using bipolar coordinates. This method had indeed 
been used successfully to solve a number of problems (Jeffery, 1920 ; Mindlin, 1940, 1948), 
in particular problems of an elastic half plane with a circular cavity. In this method the 
numerical computations are also rather complicated, however, and results are usually 
restricted to the stress distribution for cavities not too close to the free boundary. Recent 
work on the determination of stress concentration near cavities uses other analytical and 
numerical techniques, for instance singular asymptotics analysis (Callias and Markenscoff, 
1989), numerical inversion of integral transform solutions (Georgiadis et al., 1995), or 
boundary integral techniques (Rajapakse and Gross, 1995). 

It is the purpose of this paper to show that the difficulties mentioned by Sokolnikoff 
and Muskhelishvili indeed occur, but that they can be surmounted, by a combination of 
analytical and numerical analysis. In particular, the requirement of  convergence of the 
series solution will be shown to lead to an additional condition on the coefficients, which is 
essential to the evaluation of the solution. This may lead to a reappraisal of the complex 
variable method for problems of elastostatic stress concentration. 

The problems considered in this paper refer to a half plane with a circular cavity. The 
boundary conditions are that the upper boundary of the half plane is free of stress and that 
at the boundary of the cavity the radial stress is prescribed. As an example the case of a 
uniform radial stress acting at the cavity boundary will be elaborated. The stresses for this 
case have been determined long ago by Jeffery (1920L using bipolar coordinates. The 
present method confirms these results, but it also gives expressions for the displacements, 
in closed form. The complex variable solution given is more general than this single example, 
however, and it can be applied, at least in principle, to problems with arbitrary stress 
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conditions on the cavity boundary. A similar method can be used for the solution of 
problems with a prescribed displacement at the boundary of the cavity (Verruijt, 1997). 

2. STATEMENT OF THE PROBLEM 

The problem refers to an elastic half plane with a circular cavity, see Fig. I. The upper 
boundary of the half plane is free of stress, and loading takes place along the boundary of 
the circular cavity, in the form of a given distribution of surface tractions. The radius of 
the cavity is denoted by r, the depth of its center below the free surface by h, and the cover 
by d, see Fig. 1. The ratio r /h  will be considered as the basic geometrical parameter. 

In the complex variable method (Muskhelishvili, 1953 ; Sokolnikoff, 1956) the solution 
is expressed in terms of two functions ~b(z) and O(z), which must be analytic in the region 
R occupied by the elastic material (the half plane y < 0 with the exclusion of the circular 
hole). The stresses are related to these functions by the equations 

c~,~ +a~.,. = 2{~b'(z) +qV(z)}, (1) 

a,.,.--cr,, +2iay,. = 2{Z~"(z)+~'(z)}, (2) 

and the displacements are given by 

2#(u,. + iUy) = tcdp(z) - z O ' ( z )  - ~ ( z ) ,  (3) 

where/~ is the shear modulus of the elastic material and ~c is related to Poisson's ratio v by 
= 3 - 4 v  for plane strain and K = (3 -v) / (1  +v)  for plane stress. 

The boundary conditions are that on both boundaries the surface tractions are 
prescribed. It is most convenient to express the boundary condition in terms of the integral 
of the surface tractions, integrated along the boundary : 

B A B 
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Fig. I. Half plane with circular cavity. 
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j ~ s 
F ( s ) = F ~ + i F ,  = i  (t~+it~)ds,  (4) 

~'0 

where So is some arbitrary point of the boundary. Thus the boundary conditions are 
(Muskhelishvili. 1953) 

v = 0 : ~ ( z )  + z ~ ' ( z )  + ¢,{z) = 0, (5)  

x 2 + ( y  + h)  2 = r -~ : ~{z )  + "_c~'(z) + ~p(z) = F(s) + C, (6)  

where F(s) is a given function of the coordinate s along the cavity boundary, and C is an 
unknown integration constant. It has been assumed that this constant is zero along the 
stress-free upper boundary. Such an assumption may be made on one of the boundaries 
without loss of generality. The precise form of the function F(s) depends upon the actual 
stress distribution along the cavity boundary. It is assumed that the stresses at the cavity 
boundary are bounded and form an equilibrium system. In that case the function F(s) is 
continuous along the entire cavity boundary. 

3. THE SOLUTION METHOD 

3.1. ConJbrmal mapping 
It is assumed that the region R in the z-plane can be mapped conformally onto a ring 

in the ~-plane, bounded by the circles [~] = 1 and f~l = ,~, where a < 1, see Fig. 2. This ring 
shaped region is denoted by 7. The appropriate conformal transformation is 

1 -~2  1-~-~ 
z = e~(~) = - i h  (7) 

1 +~2 1--~" 

where h is the depth of  the center of the cavity, and a is a parameter defined by the ratio 
(r/h) of the radius and the depth of the cavity. 

r 2~ 

h -  1+~ z' 
(8)  

it can easily be verified that the circle I~{ -- 1 corresponds to the axis y = 0, and that the 

i ...... 
• +:. ~ £+A. 

A 

Fig. 2. Plane of conformal transformation. 
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circle ]~] = ~ corresponds to the circle x2+ (y + h) 2 = r 2. The origin in the z-plane is mapped 
onto ~ = - l ,  and the point at infinity in the z-plane is mapped onto ~ = 1, see Fig. 1. If 

~ 0 the radius of  the circular cavity is practically zero, which indicates a very deep tunnel, 
or a very large covering depth. If  ~ -~ 1 the covering depth is very small. For every value of 
r / h  the corresponding value of c~ can be determined from eqn (8). 

Because the conformal transformation function ~0(~) is analytic in the ring bounded 
by the circle 1~[ = 1 and I~l = ~, the functions ~b(z) and ~b(z), which must be analytic 
throughout the region R in the z-plane, can be considered as functions of ~, 

(9) 

*(~) = #(~o(0) = 0(0, (1o) 

and they are both analytic in the region 7 in the i-plane. This means that they can be 
represented by their Laurent series expansions, 

k = 0  k = l  

tk(~) = i ck~ ~+ i dk~ k (12) 
k = 0  k =  I 

These series expansions will converge throughout the ring 7, up to the boundaries h~l = 1 
and I~l = ~. The point ~ = - i ,  which corresponds to infinity in the z-plane, deserves 
some special consideration. Because the stresses at the cavity boundary are restricted to 
equilibrium systems, it can be assumed that the stresses tend towards zero at infinity, and 
that the displacements will be bounded at infinity, so that the Laurent series also converge 
on the boundaries. The coefficients ak, bk, Ck and dk must be determined from the boundary 
conditions. 

The boundary conditions are expressed in terms of the functions q~(z), t k ( z ) ,  and a 
term zqS'(z), see eqns (5) and (6). When transforming these conditions in terms of the 
variable ~ the term z ( o ' ( z )  needs special attention. Because (b'(z) is defined as d 4 ) / d z  (the 
accent denoting differentiation with respect to the variable indicated), the derivative with 
respect to ~ can be written as 

d~ d~ d~ 
+'(¢) - de - d: de - ,'(~>/(0. (13) 

It now follows that 

z4)'(z) = ~ ' ~ ,  4~'(~). (14) 

The character of the factor co(¢)/co'(¢) determines the mathematical  difficulties involved in 
solving boundary value problems for a certain type of region. 

In the present case the conformal transformation is given by eqn (7). Differentiation 
of this expression with respect to ¢ gives 

1 _~2 1 
o J ( ~ )  = - 2 i h  . (15) 

1 +~2 ( 1 - ¢ ) 2  

On a circle with radius p in the ~-plane we have ~ = pa, where a = exp(i0). Then ~ = pa -  ~. 
This gives 



Deformations of an elastic halt" plane 2799 

~o(~) 1 (1 +p0-)(a--p) 2 

a)'(~) 2 o'2( 1 p0-) 
(16) 

In this case, of a circular cavity, this factor appears to be relatively simple. For problems 
with a cavity of more complicated shape the factor may be so complicated that it practically 
prohibits analytic solution of the problem. 

3.2. The surJace boundary condition 
The first boundary condition is that the upper boundary y = 0 must be entirely lYee of 

stress, see eqn (5). In the ~-plane this boundary condition is, with eqn (14), 

~(~") XrU~ , (17) 

On this boundary the radius p = 1, so that the expression (16) reduces to the simple form 

<o(~) 1 
I~1 = 1 : _ _ _ ~ -  ( 1 - - a  2). 

~o'(0 2 
(18) 

The boundary condition (17)  now gives, after substitution of the series expansions (11)  and 
(12), 

a~ak+ b~a k+~ )Ok+]a k (k--l)/~/` i 
/` I k = l  k -  - - k = 2  

1 '~ 1 1_ 2/,-=21 ~ ( k -  1)8/` 10- k+ ~S/~].='f" (k + 1)/~k .. 1 aJ'+ao+sa,+~bL- 

+go+ ~, gka k+ ~ [tkak=O. (19)  
k = l  k = l  

The coefficients ca and dk can be solved from this equation, by setting the coefficients of all 
powers of a equal to zero. The result is 

1 I co = -60 -~_al -?b.,  (20) 

~., = - ~ k + ~ ( k - l ) . / `  , - ~ ( k + l ) a k ~ , .  k =  1 . 2 . 3  . . . . .  (21) 

dk = --ak+L~(k--l)& ] - { ( k + l ) b k + , ,  k =  1,2,3 . . . . .  (22) 

One half of the unknown coefficients have now been expressed into the other half. If the 
coefficients ak and bk can be found, the determination of ck and dA is explicit and straight- 
forward. The remaining unknown coefficients ak and b/`. must be determined from the 
boundary condition at the cavity boundary. 

3.3. The cavi O, boundary condition 
In this paper the first boundary value problem is considered, in which the surface 

traction is prescribed along the cavity boundary [see eqn (6)]. The transformed form of the 
boundary condition at the corresponding boundary in the ~-plane is 

oJ(0 ,,(c) + 
(23) 

where F(O is a given function, the precise form of which depends upon the stress distribution 
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along the cavity boundary in the z-plane. Points on the circle I~1 = :~ will be denoted by 
= c~a, where a = exp(i0). Along this circle the value of the first factor in the second term 

o feqn  (23) is, with eqn (16), 

~(~) - -~a- - ( l - -2~: )+~(2- - ,z~2)a  f _ ~ -  a _~ 
I~1 = ~ - -  - (24) 

e/(~) 2(1 - ~ a )  

In contrast with the boundary condition at the outer boundary, where this factor was of a 
very simple form, see eqn (18), this factor now is of  a complicated form, especially because 
of the appearance of the term ( 1 - ~ a )  in the denominator.  In order to eliminate the 
difficulties caused by this term, the boundary condition (23) is rewritten in the form 

t~1 = : ~ : ( 1 - a a )  4~ (0+  q 5 ' ( 0 + ¢ , ( 0  = F * ( c ~ a ) + C ( 1 - ~ a ) ,  (25) 

where 

F*(~a) = (1 -~a )F (~a ) .  (26) 

It may be noted that the factor (1 - ~ o )  is never equal to zero. 
The function F*(~a), which defines the boundary condition at the cavity boundary, 

depends upon the polar coordinate 0. It is now assumed that this function can be written 
as a Fourier series, 

F*(~a) = ~ Ak ak. (27) 

It can be expected that for all problems of practical significance such an expansion is 
possible. An example will be presented below. 

Elaboration of the left-hand side of  eqn (25), on the basis of  the Laurent series 
expansions (11) and (12), and the expression (24), is a laborious, but basically simple task, 
leading to sums of positive and negative powers of  o-. This leads to a system of equations 
that must be satisfied for all possible values of a, which will be the case if the coefficients 
of all powers of  ~r are equal in the left- and right-hand side of the equations. This leads to 
a rather complicated system of equations for the coefficients ak, bk, Ck and dk. However, 
after elimination of the coefficients ck and d,, using eqns (20)-(22), the result is that the 
coefficients ak and bk must satisfy the equations 

l ~k+'~x - ~ -  -la~+, + ( 1 - ~ 2 ) ( k + l ) b , ~ ~  

= '~2(1--~2k)a/,-+ ( l - - ~ : ) k b *  -a'~k+ , ~J,+l~ , k = 1,2,3, . . . ,  (28) 

and 

(1 --~2)~ak(k+ l)ak+l +(1 --~2~+2)b~+1 

=(l--~2),~2kkak+(l--.X2k)bk--A k~ k, k =  1,2,3 . . . . .  (29) 

From these equations the coefficients ak+~ and b~,+~ can be determined, if ak and bk are 
known. This requires the solution of a system of two equations with two unknowns. The 
solution can be given explicitly, of course, but it may well be more convenient to solve the 
system numerically. 

It may be noted that the homogeneous system (obtained when Ak + ~ = A j, = 0) admits 
a solution 
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Ak+, = A k = 0 " a k - ,  = - h ~ - i  =a~  = -b~ .  

2801 

(30) 

This property will be used later. 
Equations for the starting coefficients a~ and a2 can be obtained from the conditions 

that the coefficients of  a0 and a ~ must be zero. This gives 

(1 -:~2)(a~ +?i, ) + C = -A, , .  (31) 

(1  - ~ - ~ ) ( a ~  +b~) - C:~ ~ = - A ~  :~. (32) 

It follows from eqns (31) and (32) that 

C+Cc< -~ = - A 0 + A ~ ,  (33) 

which determines the integration constant C. 
All the coefficients can now be determined successively, except for the constants a0 and 

(a~ + b j). The constant a0 represents an arbitrary rigid body displacement, which produces 
no stresses in the material. It can be left undetermined, or it can be chosen so that a certain 
given point is fixed, for instance the point at infinity. Of the constants a~ and b~ only the 
combination (a~ + bl) is determined by the conditions (31) and (32). Its complex conjugate 
(a~ + b~) remains undetermined by the equations given above. This difficulty can be resolved 
by noting that the convergence of the series expressions (11 ) and (12) for the stress functions 
~b and ~, for all values of¢  in the ring ~ ~< I¢] ~< 1, and in particular for { = 1, requires that 
all coefficients tend towards zero for k --+ oo, and this is not automatically ensured. Because 
the system of recurrent equations (28) and (29) is linear, and because the homogeneous 
system of equations admits the solution (30), in which all coefficients ak and --bk are equal, 
it follows that an arbitrary constant can be added to each of these coefficients without 
affecting the solution of the equations given above. Thus, the first constant, say a~, can be 
determined by requiring that the coefficients tend towards zero for k--* oo. This can be 
executed by first assuming the constant al to be zero, then calculating b~ from eqn (31), 
and all further coefficients from a repeated application of eqns (28) and (29). It can be 
expected (and has been verified by performing the actual calculations) that for very large 
values of k, say k = 1000 or k = 10,000, a constant limiting value, other than zero, is 
obtained for the coefficients ak. The correct value of the coefficients can then be found by 
subtracting that limiting value from al and all further coefficients ak and --bk. The remaining 
coefficients Ck and dk can finally be determined from eqns (20)-(22). This completes the 
solution. 

It may be noted that the assumption that the coefficients tend towards zero for k --0 oc, 
implies that a singularity of  the form 1/ (1-  ~) has been excluded. Inside the unit circle 
]¢l = 1 this function can be approximated by the power series 

1.:(1-~) = 1 + ~ + ~ ' + ~ 3 + .  c- ' " ,  (34) 

which converges inside the circle, but not on it. Actually, this is the singularity in the 
conformal transformation function (7), corresponding to a stress function q~ = cz. It can 
be shown that a stress function ~b = cz denotes a constant stress solution ( for  real values 
of  c) and a rigid body rotation (for  imaginary values of c). The constant stress solution 
violates the conditions at infinity, and the rigid body rotation may be left undetermined, or 
may be excluded, without effect on the stresses. 

4. EXAMPLE:  U NIFORM  RADIAL STRESS 

As an example the problem of a uniform radial stress of magnitude t at the cavity 
boundary is considered. A partial solution of this problem, considering the stresses only, 
has first been given by Jeffery (1920), using bipolar coordinates [see also Coker and Filon 
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(1931) ; T imoshenko  and Good ie r  (1951)]. In this case the surface tract ions along the cavity 
bounda ry  are 

x v + h  
t, = t , 8 = t  (35) 

r r 

According to eqn (4) this must  be integrated along the boundary ,  

f '  f '  z + i h  F = F ~ + i F 2  = i  ( t , + i t ~ . ) d s = i t  ds. (36) 
F 

At the bounda ry  of  the cavity z + ih = r exp(i/?), where r is the constant  radius of  the circular 
cavity a n d / / i s  the variable angular  coordinate.  Along the integrat ion pa th  ds = rd/?, so 
that  

F =  it exp(il3)rd/~ = t r [ e x p ( i f l ) - 1 ]  = t(z + i h - r ) ,  
) 

(37) 

where it has been assumed that  the point  so corresponds  to fl = 0. With eqn (7) the 
expression (37) can be expressed in terms of  the value of  ~ = ~a along the boundary  in the 
~-plane, 

2ith~ 
F = [ ~ -  ty + i(1 - ~a)]. (38) 

(1 + ~2)(1 - ~ a )  

This means  that  the function * ~ F (~), as defined by eqn (26), is 

2ithct 
F* - ~ [ ~ - ~ + i ( 1 - c ~ ) ] .  (39) 

1 + ~  ~ 

It appears  that  in this case the bounda ry  function only contains terms of  the powers  a ° and 
a 1. The only two non-zero  coefficients in the Fourier  expansion (27) are 

2ith~ 2ith~ 
A0 = - %~(~+i), A1 = - ~ ( l+ i~) .  (40) 

1+:¢- 1 + ~ -  

The  determinat ion of  all the coefficients o f  the solution may  now proceed in the way 
outlined in the previous section. First the integrat ion constant  C can be determined f rom 
eqn (33). This gives 

2th~ 
C = (41) 

1 +~2" 

It  now follows f rom either eqn (31) or  eqn (32) that  

2ith~ 2 
al + b l  - (42) 

1 _~4 " 

Because all coefficients Ak+ j and Ak in the recurrent  eqns (28) and (29) are zero in this case, 
it can be expected that  this system has a very simple solution. Actually,  by taking k = 1 in 
these equat ions one obtains  
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(1 +~2)ae +2bz = o~2al + b l .  

2~2a2 + (1 q-o~2)h2 : ~ 2 a  I + b  I . 
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(43) 

(44) 

It appears that the right-hand side of the two equations is the same. This means that the 
coefficients a2 and b2 will be zero if this right-hand side is zero, i.e. if b~ = -:~2ar. Then all 
further coefficients ak and b~ will also be zero, as mentioned above as a special solution of 
the homogeneous system of equations. Thus it can be concluded that convergence of the 
Laurent series is ensured if and only if b~ = -~2al .  With eqn (42) it now follows that 

al = 2iP, t,i = 2i~: P, (45) 

where 

72th 
= . ( 4 6 )  P (1-:~)(1-:~4) 

All coefficients ak and bk for k > 1 are identically equal to zero. 
The last remaining coefficient a0 can be determined so that the displacement at infinity 

is zero. It follows from eqns (3) and (5) that this will be the case if ~b = 0 for z = ~ ,  that 
is for ( -- 1. With eqn (11) this gives 

ao = --al  - b l  = -2 i (1  q _ ~ 2 ) p .  (47) 

The other non-zero coefficients in the series expansions for the stress functions now are, 
with eqns (20)-(22), 

co = -3 i (1  +o~'-)P, c~ = 2i~2p, c~ = iP, (48) 

dl = 2iP, d2 : i~2 p. (49) 

The stress functions ~b(~) and 0(~) now are completely determined. They can be written in 
full as 

q~(~) 2i~ 2 
- - 2 i ( 1  + ~ 2 ) + 2 i ~ +  - - - -  ( 5 0 )  

P 

~b(~) 2i i~ ~ 
- --3i(1 + ~ 2 ) + 2 i ~ 2 ~ + i ~ 2 - +  T + • (51 

P < ~- 

From these simple expressions all the stresses and the displacements may be obtained. This 
enables, for instance, to verify that the boundary conditions along the two boundaries are 
identically satisfied, No details of  the calculations will be given, as they are all straight- 
forward. The expressions for the stresses are all in agreement with Jeffrey's solution (Coker 
and Filon, 1931). The present solution also enables us to obtain closed form expressions 
for the displacements. 

5. C O N C L U S I O N S  

It has been shown that the complex variable method can be used successfully for the 
solution of elasticity problems for a half plane with a circular cavity. By using a conformal 
mapping onto a circular ring, it is found that the coefficients of the various terms in the 
Laurent series expansions of  the complex stress functions can be determined from the 
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b o u n d a r y  c o n d i t i o n s .  In  th i s  s o l u t i o n  it  is r e q u i r e d  to  d e t e r m i n e  o n e  o f  t he  coef f ic ien ts  such  

t h a t  c o n v e r g e n c e  o f  the  L a u r e n t  ser ies  is e n s u r e d .  T h i s  c o n d i t i o n  c a n  be  sa t i s f ied  b y  

n u m e r i c a l l y  e v a l u a t i n g  the  coeff ic ients ,  a n d  t h e n  r e q u i r i n g  t h a t  the  coef f ic ien t s  t e n d  t o w a r d s  

zero.  T h e  s o l u t i o n  m e t h o d  h a s  b e e n  i l l u s t r a t e d  by  c a l c u l a t i n g  t he  d e f o r m a t i o n s  fo r  the  case  

o f  a u n i f o r m  s t ress  a p p l i e d  a t  t he  cav i ty  b o u n d a r y .  
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