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CHAPTER 12

SLOPE STABILITY

In this chapter Bishop’s method (Bishop, 1955) for slope stability analysis is pre-
sented, together with a simple program. The usual procedure in the analysis of
stability of slopes is to calculate the safety factor of various assumed slip surfaces,
and then to regard the slip surface having the smallest safety factor as critical. If
the safety factor is smaller than 1 the slope is considered to be unstable. In normal
conditions the design of such a slope is rejected. In the design of dikes and dams
it is usually required that the smallest safety factor is greater than 1, say 1.2 or
1.3.

An unstable slope may be considered acceptable if the unstable condition occurs
only in exceptional circumstances, such as in the event of a severe earthquake,
coinciding with a high water level. In such cases it may be necessary to predict
the deformations that the unstable slope will undergo. If these are small enough
the design may still be adequate. In case of a water retaining dam the freeboard
will be reduced by the failure, but it is possible that the deformations are so
small that the dam keeps its function as a water retaining structure. For this case
an estimation of the deformations of an unstable slope will be presented in this
chapter, on the basis of a modification of Bishop’s method.

12.1 Bishop’s method

Bishop’s simplified method is based upon a consideration of moment equilibrium
of the soil mass above an assumed circular slip surface, see figure 12.1.

The soil mass is subdivided into a number of vertical slices, of width b and
height h. The average volumetric weight in a slice is denoted by <, so that the
weight of each slice is ybh. The maximum shear stress acting at the lower boundary
of a slice is related to the local cohesion ¢ and the normal effective stress o’ by
Coulomb’s relation

Tr = c+ o' tan ¢, (12.1)

where ¢ is the angle of internal friction.

It is now assumed that the actual shear stress acting upon the lower boundary
of a slice is 7y/F, where F' is a certain constant, the stability factor, or safety
factor. Hence

T= % (c + o' tan ¢). (12.2)

It is assumed that the factor F' is the same for all slices.

204
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Figure 12.1. Slip circle method.

Equilibrium of moments with respect to the center of the slip circle can be
expressed by equating the sum of the moments of the weight of each slice with
respect to the center of the circle to the sum of the moments of the shearing
forces at the bottom of the slices. Because the horizontal distance from a slice to
the center is Rsin« and the area of the bottom section of a slice is b/ cos «, this
equilibrium condition can be expressed as

TR
hbRsina = . 12.3
ShhbRsina = 3 T (123
If all slices have the same width, it follows from (12.2) and (12.3) that
F:Z[(c—l—a'tangb)/cosa]. (12.4)

> yhsina

This formula is the basis of several methods, such as those developed by Fellenius
(1927) and Bishop (1955). Because Bishop’s method has been validated against so-
lutions for various particular cases and has been used extensively with satisfactory
results it will be presented below.

In Bishop’s method it is assumed that the forces transmitted between adjacent
slices are strictly horizontal. It then follows from the vertical equilibrium of a slice,
see figure 12.2, that

yh=0"+p+7tana. (12.5)
By using the expression (12.2) for the shear stress 7 one now obtains

t t
anaTangb) =~h—p-— £ tana. (12.6)

/
1
o'(1+ 7
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Figure 12.2. Forces on a slice.

Substitution of this expression into equation (12.4) for the stability factor F' now
gives, finally,

3 ¢+ (yh — p)tan ¢
cosa(l +tana tan ¢/ F)

> yhsina

This is the basic formula of Bishop’s method. Because the stability factor F' also
appears in the right hand side of the equation, its value must be determined iter-
atively, starting with an initial estimate. Experience has shown that the method
usually converges very fast, and that the initial estimate can be taken as F' = 1.0.

It should be noted that in the formula (12.7) the factor vh denotes the total
weight of a slice of soil. In an inhomogeneous soil this may be the sum of the
weight of a number of sections consisting of different types of soil, from the top of
the slice to its bottom. The upper sections of the slice may consist of dry soil, and
the lower parts (below the water table) may consist of saturated soil. The shear
strength parameters ¢ and ¢ apply to the slip surface, that is the bottom of the
slice. In an inhomogeneous soil the values for ¢ and ¢ should of course be taken
at the bottom of the slice.

F= . (12.7)

12.2 Koppejan’s modification

The maximum shear stress acting at the bottom of a slice is given by

et (th—p)tang

= . 12.8
T~ T¥tana tan ¢/ F (12:8)

If F =1 this shear stress becomes infinitely large for a = ¢ — %77, because then
tan a tan ¢ = —1. Such a value for the angle a may occur near the lower end of the
slip circle, if the circle is deep, and the friction angle is large. For larger negative
values of « the shear stress is negative, which would mean that the shear stress is
not acting against the direction of slip. This may lead to unrealistic values for the
stability factor, and therefore it has been suggested by A.W. Koppejan of Delft
Geotechnics that the value of a to be used in the expression for the shear stress
be cut off at %qﬁ — %w, which is one half of the critical value. This is called the
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modified Bishop method. In most cases the cut-off value is not reached, but it is
a refinement that avoids unrealistic values for deep slip circles. This modification
has been implemented in the programs used at Delft, and in the program to be
presented below.

12.3 Computer program

A computer program that performs the calculations described above is reproduced
below. It applies to the situation sketched in figure 12.3. This represents an
embankment on an existing homogeneous soil deposit. The groundwater table

Figure 12.3. Stability of an embankment slope.

inside the embankment may be different from the water table at the downstream
slope. The soil properties of the embankment material may be different from those
of the subsoil. The slip circles to be investigated are defined by the location of 25
possible centers in a window, and a given lower depth of the slip circles.

program slope;
uses crt,graph;
const
nx=100;mx=4;my=4;
var
maxx,maxy,graphdriver,graphmode,errorcode:integer;
xasp,yasp:word;xa,ya,xb,yb,dx,dy,sx,sy:real;
1,h,h1,h2,gw,gdl,gnl,ccl,phil,gd2,gn2,cc2,phi2,x1,y1,x2,y2,y0:real;
s,p:array[l..nx] of real;ff:array[0..mx,0..my] of real;data:text;
procedure title;
begin
clrscr;gotoxy(36,1) ;textbackground(7) ;textcolor(0);write(’ SLOPE ’);
textbackground(0) ;textcolor(7);writeln;writeln;
end;
procedure graphinitialize;
begin
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graphdriver:=detect;initgraph(graphdriver,graphmode,’’);
errorcode:=graphresult;
if (errorcode<>grok) then
begin
writeln(’Error in graphics :’,grapherrormsg(errorcode));
writeln;writeln(’Program interrupted.’);halt(1);
end;
setcolor(7) ;setbkcolor(0) ;setlinestyle(0,0,1);
setfillstyle(11,7) ;maxx:=getmaxx;maxy:=getmaxy;
getaspectratio(xasp,yasp) ;closegraph;
end;
procedure dots(xl,yl,x2,y2:integer);
var
i,x,y,nr:integer;dx,dy,dr,xa,ya:real;
begin
xa:=x1;dx:=x2-x1;ya:=yl;dy:=y2-y1;
if dx<0 then begin xa:=x2;ya:=y2;dx:=-dx;dy:=-dy;end;
if (x1=x2) and (dy<0) then
begin
xa:=x2;ya:=y2;dx:=-dx;dy:=-dy;
end;
dr:=(sqrt (dx*dx+4*dy*dy))/4;
if (dr>0) then begin dx:=dx/dr;dy:=dy/dr;end;
nr:=trunc(dr);
for i:=0 to nr do
begin
x:=round(xa) ;y:=round(ya) ;
line(x,y,x,y) ;xa:=xa+dx;ya:=ya+dy;
end;
end;
procedure input;
var
name:string;
begin
title;
writeln(’This is a program for the analysis of the stability’);
writeln(’of a slope, using the Bishop method.’);writeln;
write(’Name of input datafile ............ ’) ;readln(name) ;
assign(data,name) ;reset(data) ;readln(data,l,h,h1,h2,gw);
readln(data,gdl,gnl,ccl,phil);readln(data,gd2,gn2,cc2,phi2);
readln(data,x1,y1,x2,y2,y0);
if (y1<h) then yil:=h;if (y2<y1+0.005) then y2:=y1+0.005;
if (x2<x1+0.005) then x2:=x1+0.005;
if (h2>h) then h2:=h;if (hi1>h) then hil:=h;
if (h1<0.0) then h1:=0.0;if (h2<0.0) then h1:=h2;
close(data);title;
end;
procedure stability;
var
i,j,k,kk,ia,ib,ja,jb:integer;
xc,yc,x1l,yl,xr,yr,r,f,fa,pi,cc,ph,tf,a,b,bb:real;
dx,x,x3,x4,y,yb,yt,yn,co,si,ta,tb,e,pl,p2,p3:real;
begin
clrscr;
xa:=-1;xb:=2%1;ya:=-h;yb:=h;
if (x1<xa) then xa:=x1;if (x1>xb) then xb:=x1;
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if
if
if
if

dx:

if

pi:

(yi<ya) then ya:=y1;if (y1>yb) then yb:=yi;

(x2<xa) then xa:=x2;if (x2>xb) then xb:=x2;

(y2<ya) then ya:=y2;if (y2>yb) then yb:=y2;

(yO<ya) then ya:=y0;if (yO>yb) then yb:=y0;
=xb-xa;dy:=yb-ya;sx:=maxx/dx;sy:=(yasp/xasp)*maxy/dy;
sy<sx then sx:=sy;sy:=xasp+*sx/yasp;

=3.1415926;

for i:=0 to mx do
begin

xc:=x1+i*(x2-x1)/mx;
for j:=0 to my do

begin
initgraph(graphdriver,graphmode,’’);
ia:=0;ib:=round(sx*(xb-xa)) ; ja:=maxy-round(-sy*ya); jb:=ja;
line(ia,ja,ib,jb);
ia:=round(-sx*xa) ;ib:=round(sx*(1l-xa));
ja:=jb; jb:=maxy-round(sy*(h-ya));line(ia,ja,ib, jb);
ia:=ib;ib:=round(sx*(xb-xa));ja:=jb;line(ia, ja,ib,jb);
for k:=0 to mx do
begin
x:=x1+k*(x2-x1) /mx;ia:=round(sx*(x-xa));ib:=ia;
ja:=maxy-round(sy*(yl-ya));jb:=maxy-round(sy*(y2-ya));
line(ia,ja,ib,jb);
end;
for k:=0 to my do
begin
y:=yl+k*(y2-y1) /my; ja:=maxy-round (sy*(y-ya));jb:=ja;
ia:=round(sx*(x1-xa));ib:=round(sx*(x2-xa));
line(ia,ja,ib,jb);
end;
if (h2<0.0) then
begin
ia:=0;ib:=round(sx*(xb-xa));ja:=maxy-round(sy*(h2-ya));jb:=ja;
dots(ia,ja,ib,jb);
end
else
begin
ia:=0;ib:=round(sx*(h1*1/h-xa));ja:=maxy-round(sy*(hl-ya));jb:=ja;
dots(ia,ja,ib,jb);
ia:=round(sx*(h2*1/h-xa)) ;ib:=round (sx*(xb-xa)) ;
ja:=maxy-round(sy*(h2-ya));jb:=ja;dots(ia,ja,ib, jb);
end;
yc:=yl+j*(y2-y1) /my;r:=yc-y0;
pl:=1+h*h/(1*1) ;p2:=-2%xc-2*yc*h/1;p3:=XC*XC+yCkyC—I*r;
xr:=(-p2+sqrt (p2*p2-4.0%p1*p3))/(2*pl) ;yr:=xr*h/1;
if (xr>1) then
begin
yr:=h;xr:=xc+sqrt (r*r-(yc-yr)*(yc-yr));
end;
x1:=(-p2-sqrt (p2*p2-4.0%p1*p3))/(2*p1) ;yl:=x1%h/1;
if (x1<0) then
begin
y1:=0.0;x1:=xc-sqrt (r*r-(yc-yl)*(yc-yl));
end;
if (yl<hl) then
begin

209
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y1l:=h1;x1:=xc-sqrt(r*r-(yc-yl)*(yc-yl));
end;
dx:=(xr-x1) /nx;
ia:=round(sx*(xc-xa));ja:=maxy-round(sy*(yc-ya));
x:=x1;yb:=yc-sqrt (r*r-(x-xc)*(x-xc));
ib:=round(sx*(x-xa)) ; jb:=maxy-round(sy*(yb-ya));
line(ia,ja,ib,jb);
for k:=1 to nx do
begin
x:=x1+(k-0.5) *dx; yb:=yc-sqrt (r*r- (x-xc) *(x-xc));
ia:=ib;ja:=jb;ib:=round(sx*(x-xa)) ;
jb:=maxy-round(sy*(yb-ya));line(ia,ja,ib,jb);
ta:=(x-xc)/(yc-yb) ;co:=sqrt(1.0/(1.0+ta*ta));si:=co*ta;
yt:=x*h/1;if (x<0.0) then yt:=0.0;if (x>1) then yt:=h;
if (h2<0.0) then yn:=h2 else
begin
x3:=h1*1/h;x4:=h2*1/h;
yn:=x*h/1;
if (x<x3) then yn:=h1l;if (x>x4) then yn:=h2;
end;
plk]:=0.0;if (yn>yb) then pl[k]:=gw*(yn-yb);
s[k]1:=0.0;if (yb>0.0) then
begin
if (yn>yb) then
begin
if (yt>yn) then s[k]:=gni*(yn-yb)+gdix(yt-yn)
else
begin
if (yt>yb) then s[k]:=gnix(yt-yb)+guw*(yn-yt)
else s[k]:=gu*x(yn-yb);
end;
end
else if (yt>yb) then s[k]:=gdi*(yt-yb);
end
else
begin
if (yn>0) then s[k]:=gn2%(0.0-yb) else
begin
if (yn>yb) then s[k]:=gn2*(yn-yb)+gd2*(0.0-yn)
else s[k]:=gd2*(0.0-yb);
end;
if ((yt=0.0) and (yn>0)) then s[k]:=s[k]+guw*yn;
if (yt>0.0) then
begin
if (yn>0.0) then
begin
if (yt>yn) then s[k]:=s[k]+gnl*yn+gdli*(yt-yn)
else s[k]:=s[k]+gnixyt+gw*(yn-yt);
end
else s[k]:=s[k]+gdl*yt;
end;
end;
end;
x:=xr;yb:=yc-sqrt (r*r-(x-xc)*(x-xc));
ia:=ib;ja:=jb;ib:=round(sx*(x-xa));
jb:=maxy-round(sy*(yb-ya));line(ia,ja,ib, jb);
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ia:=round(sx*(xc-xa)) ; ja:=maxy-round(sy*(yc-ya));
line(ia,ja,ib,jb);
f:=1.0;e:=1.0;
while (e>0.001) do
begin
a:=0.0;b:=0.0;
for k:=1 to nx do
begin
x:=x1+(k-0.5) *dx;
yb:=yc-sqrt (r*r-(x-xc)*(x-xc));
ta:=(x-xc)/(yc-yb) ;co:=sqrt(1.0/(1.0+ta*ta));si:=cox*ta;
yt:=x*h/1;if (x<0.0) then yt:=0.0;if (x>1) then yt:=h;
cc:=0.0;ph:=0.0;
if (yb<0.0) then begin cc:=cc2;ph:=phi2;end
else if (yb<yt) then begin cc:=ccl;ph:=phil;end;
ph:=ph*pi/180;tf:=sin(ph)/cos(ph);
tb:=sin(0.5*%ph-0.25%pi)/cos(0.5*ph-0.25%pi) ;
if (ta<tb) then ta:=tb;
a:=a+(cc+(s[kl-plkl)*tf)/(cox (1+taxtf/£));
b:=b+s[k]*si;
end;
fa:=a/b;e:=abs(f-fa);f:=fa;
end;
f££[i,j]l:=f;closegraph;
end;
end;
end;
procedure output;
var
i,j:integer;
begin
title;
writeln;writeln(’ y Stability factors :’);
writeln(’ )3
for j:=0 to my do
begin
write(y2-j*(y2-y1)/my:9:3,’ [’);
for i:=0 to mx do write(ff[i,my-j]:9:3);writeln;
end;
writeln(’ ')
write(’ X =’);for i:=0 to mx do write(x1+i*(x2-x1)/mx:9:3);
writeln;writeln;
end;
begin
graphinitialize;
input;
stability;
output;
end.

Program SLOPE.

The program reads data from a datafile, the name of which must be supplied by
the user. This datafile must be prepared before, for instance using a word process-
ing program. The meaning of the input parameters is shown in table 12.1. Any
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—

Length of the slope

h Height of the slope

hl Water level on the left side

h2 Water level on the right side

ew Volumetric weight of water

gdl | Volumetric weight of soil in embankment, when dry
gnl | Volumetric weight of soil in embankment, when saturated
ccl Cohesion of soil in embankment

phil | Friction angle of soil in embankment (in degrees)
gd2 | Volumetric weight of soil in subsoil, when dry

gn2 | Volumetric weight of soil in subsoil, when saturated

cc2 Cohesion of soil in subsoil

phi2 | Friction angle of soil in subsoil (in degrees)
x1 Lower left corner of window of centers

vl Lower left corner of window of centers

x2 Upper right corner of window of centers
y2 Upper right corner of window of centers

y0 Deepest point of slip circles

Table 12.1. Input parameters program SLOPE.

consistent system of units may be used, for instance meters for length, and kilo-
newtons for forces. The volumetric weights then are in kN/m3, and the cohesion
is in kN/m?2. The friction angles must be given in degrees.

For each center the program first determines the location of the slip circle, by
determining the extreme points, at the right and the left end. This is done by
first assuming that the slip circle intersects the slope, and then correcting this
assumption if the intersection point is to the right of the upper corner, or to the
left of the lower corner. If the water level on the left side is above the soil surface
(as in figure 12.3) the slip circle extends to the water surface. The sliding soil
mass, above the slip circle, is subdivided into 100 slices. The program determines
the lowest point of every slice (yb), the location of the soil surface (yt), and the
location of the water table (yw). This then enables to calculate the total stress and
the pore pressure at the bottom of the slice. The stability factor F' is determined
iteratively, until the difference between successive values is less than 0.001.

A sample dataset is shown in table 12.2. This dataset applies to a clay dam

10.000 5.000 1.000 4.000 10.000
16.000 20.000 20.000 0.000
16.000 20.000 0.000 30.000

2.000 9.000 4.000 11.000 -1.000

Table 12.2. Dataset SLOPEL.
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(¢ =20 kPa, ¢ =0°), on a sandy subsoil (¢ =0 kPa, ¢ = 30°). During the cal-
culations the slip surfaces considered are shown on the screen, in graphical form.
After completion of all calculations output from the program is presented in the
form of a table of the stability factors, see table 12.3. In general the calculations

y | Stability factors :
|

11.000 | 1.295 1.275 1.271 1.282 1.308
10.500 | 1.303 1.277 1.270 1.278 1.302
10.000 | 1.309 1.279 1.269 1.276 1.299
9.500 | 1.324 1.288 1.273 1.276 1.296
9.000 | 1.345 1.300 1.279 1.279 1.296

X = 2.000 2.500 3.000 3.500 4.000

Table 12.3. Output of computer program SLOPE.

should be repeated with a different set of centers until the lowest stability factor
is clearly inside the window, and not at one of its boundaries. The deepest point
of the slip surfaces should also be varied until the most dangerous slip surface, i.e.
the circle with the lowest factor of safety, is obtained.

The program contains a small number of statements to prevent certain incon-
sistent or impossible situations, such as a groundwater table above the top of the
embankment. It does not warn for other errors, however. If a circle does not
intersect the soil surface, for instance, the program will accept the data, and then
fail during the calculations.

The user may extend the program SLOPE to more general cases, such as
embankments of more complicated shape, with variable water levels, and consisting
of many soil layers, with variable properties. Programs with such facilities, and
with facilities to produce graphical output on various devices, are distributed by
various companies and institutes.

12.4 Deformations

The classical slip circle analysis does not give any information about the deforma-
tions that will occur when a slope is unstable (F' < 1.000). In order to obtain a
first order estimation of these deformations one may consider the development of
the stability factor F' when the slope slides along the slip circle, see figure 12.4.
When the soil mass above the slip circle rotates about the center of the slip
circle (this is the only form of motion that is kinematically admissible) it can be
expected that the driving force is reduced. The moment of the weight with respect
to the center is reduced by the movement, which will tend to improve the stability
of the soil mass. It should be noted that there is also a negative effect, because
at the lower end of the slip circle some soil will loose contact with the base. The
analysis of the stability factor after a certain rotation can be performed as follows.
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Figure 12.4. Rotation of sliding soil mass.

The general formulas for the displacements due to a rotation over an angle 3
with respect to the point z.,y. can be derived by expressing the coordinates of a
point in polar coordinates before and after the rotation. This gives

2 = o+ (x—xc) cos B+ (y — y.) sin B, (12.9)
Y =ye+ (y — ye) cos B — (z — x.)sin 3. (12.10)

These formulas can be used to determine the coordinates of the points in the
sliding soil mass after rotation.
The basic equation of equilibrium of moments, equation (12.3), now becomes

THR

cosa’

(12.11)

Svhb(z, — o) = 32

where z! is the z-coordinate of the center of mass of a slice (after rotation) and
Z. is the x—coordinate of the center of the slip circle. Using the angle o to denote
the original position of the slice one may write

x — z. = R[sinacos 3 + w sin 3], (12.12)
where y, is the (original) y-coordinate of the center of mass of the slice. The

stability factor F' can now be expressed as

_ > (e+ o’ tan @)/ cos a]
F = S ~h[sinacos 8+ (Yo — ye) sin 3/R]’ (12.13)

It is assumed, in analogy with the standard Bishop method, that the interaction
forces between the slices are horizontal, so that their contribution to the equation
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Figure 12.5. Forces on a slice after rotation.

of vertical equilibrium vanishes. The equation of vertical equilibrium of a slice (see
figure 12.5) now is

cos(a — f3) n 7_sin(oz - ﬂ).

vh = (o' + p)
COS & COS &

(12.14)

Here it has been assumed that the thickness of the slice is constant during the
rotation. Using the expression (12.2) for the shear stress 7 one now obtains

sin(a — () tang,
#} -
~yhcosa —pcos(a — ) — % sin(a — f3). (12.15)

o'cos(a — B) +

Substitution of this expression into equation (12.13) leads to the following formula
for the stability factor after rotation

ccos(a — ) + [yh cos o — pcos(ar — B)] tan ¢
2 cos afcos(a — B) + sin(a — (3) tan ¢/ F)

Y- vhlsinacos 5+ (yo — ye) sin §/R]

It can easily be seen that for § — 0 this formula reduces to the standard form
(12.7).

It should be noted that the summation in the numerator should be extended
only over those slices that remain in contact with the subsoil. The summation
in the denominator, which expresses the moment of the gravity forces, should be
extended over all slices, except in case of a water retaining slope. In the latter case
it is assumed that the water level is unaffected by the rotation. In case of a slope

F =

(12.16)
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above groundwater, as shown in figure 12.4, the summation in the denominator
extends over all slices.

In case of a non-homogeneous soil it is not immediately clear what values of
the soil strength parameters ¢ and ¢ should be used : those below the slip circle
or those above it, or perhaps the average. In the program used to demonstrate
the procedure presented in this chapter the values above the slip circle have been
chosen, rather arbitrarily.

12.5 Implementation

The extension described above has been implemented into the program STABIL
of the Geotechnical Laboratory of the Delft University of Technology. The general
idea is that in case of an unstable slope (F' < 1) a value of the angle [ is chosen,
such that the stability factor increases to the value 1.000. This must be done
iteratively. The final value of the angle § can be used as a measure, or first
estimate, of the deformations that can be expected during failure of the slope.
As a first example one may consider an embankment in dry soil, having a
slope 1:1, with a rotation of the soil mass above the slip circle over an angle of
45° see figure 12.6. Irrespective of the soil properties the stability factor now is

F =999.999
Figure 12.6. Example 1.

found to be practically infinite (as indicated by the maximum value in the program
F = 999.999), which is in agreement with the fact that the driving moment now
vanishes. The procedure leads to an intuitively correct answer in this case.

A second example is shown in figure 12.7. The height of the embankment in
this case is 8.00 m, and the slope is 1:1. The soil is purely cohesive (¢ = 0),
with a cohesion ¢ = 12 kPa, a dry volumetric weight of 16 kN/m? and a saturated
volumetric weight of 20 kN/m3. The water level is 7 m above base level. The
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Figure 12.7. Example 2, unstable slope.

stability factor in this case is found to be F' = 0.792, indicating that the slope is
indeed unstable. By trial and error it can be found that by rotating the sliding
soil mass over an angle § = 2.85° the stability factor is increased to F' = 1.000,
see figure 12.8. Because the radius of the slip circle in this case is 14 m, it now

Figure 12.8. Example 2, stable slope after failure.

follows that the maximum vertical displacement is about 0.67 m. This may well be
acceptable if the probability of occurrence of this situation, with the parameters
used in the calculations, is small. It may be, for instance, that the actual strength
of the soil is greater, say ¢ = 20 kPa, and that the smaller value of ¢ = 12 kPa
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occurs only after an earthquake, during which the strength of the clay is reduced
(This is called degradation of the soil). The embankment appears to be unstable
after the earthquake, and will have to be repaired, but the failure is perhaps not
catastrophic. Actually, it can be seen from figure 12.8 that after the deformation
of the embankment some freeboard remains. In order to verify the outcome of
these calculations one may compare them with the results obtained by taking the
base level 0.65 m higher, and the level of the embankment 0.65 m lower. In that
case the stability factor is found to be F' = 1.000, which provides some support
for the applicability of the deformation analysis presented above.

It can be concluded that the procedure presented in this section leads to rea-
sonable results, and gives a first order estimation of the deformations that can
be expected when an unstable slope fails. It should be noted that the method is
based on various simplifying assumptions, so that the numerical values should be
considered as not more than an indication of the order of magnitude of the real
displacements.

Exercises

12.1 Show that the program SLOPE leads to a safety factor close to F' = 1.000 for an
embankment in a homogeneous friction material (¢ = 0) if the slope angle is equal to the
friction angle ¢ of the material.

12.2 In a purely cohesive dry material (¢ = 0) the maximum height of a vertical cutoff
is about 3.83 ¢/7, where c is the cohesion and v is the volumetric weight. Show that the
program SLOPE confirms this result.



