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1. Introduction

In an earlier report (Verruijt, 1996) it has been shown that certain problems of stresses and deformations
caused by deformation of a tunnel in an elastic half plane can be solved by the complex variable method,
as described by Muskhelishvili (1953). The geometry of the problems is that of a half plane with a circular
cavity, see figure 1.1. The boundary conditions are that the upper boundary of the half plane is free of
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Figure 1.1. Half plane with circular cavity

stress, and that the boundary of the cavity undergoes a certain prescribed displacement, for instance a
uniform radial displacement, or that at the boundary of the cavity given surface stresses are applied, for
instance a uniform radial stress.

In this report Mindlin’s problem of a circular cavity in an elastic half plane loaded by gravity is
considered, see the left part of figure 1.2. The characteristics of this problem are that the stresses and

Yy n
1
B A B . AC’/DB£
N
B h
[E 7
. Lot
D

Figure 1.2. Mindlin’s problem

strains due to the removal of the material inside a circular cavity are to be determined, with the stresses
at infinity being determined by the action of gravity.

The problem will be solved by using the complex variable method, with a conformal mapping of the
region in the z-plane onto a circular ring in the (-plane, see the right part of figure 1.2.

1.1 Statement of Mindlin’s problem

The problem will first be defined by giving all the relevant equations and the boundary conditions.
Equilibrium of the material requires that
8 T 8 xT
7 Tvz _ ), (1.1)
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where + is the unit weight of the material. It has been assumed that gravity acts in negative y-direction.
The stresses are related to the displacements through Hooke’s law,

Opz = A&+ Zu(?;;m ) (1.3)

Oyy = e+ Zu%, (1.4)

amy:aym:u(a(;j; +%), (1.5)
where e is the volume strain,

= (?;;m %. (1.6)

Boundary conditions must be specified along all boundaries.
The condition at infinity is assumed to be that at infinity the stresses should approach the following
limiting values.

Oyy = 7Y, (1.7)
Oza = Kovy, (1'8)
Ozy = 0, (1.9)

where v is the unit weight of the material, and Ky is a given constant, the coefficient of lateral earth
pressure. These conditions are imposed because this is a possible solution for the problem without the
cavity. In soil mechanics the coefficient K is considered to be an independent parameter, determined by
the geological history of the material during and after deposition. It is assumed that the excavation of
the cavity will result in a local disturbance only, so that the stresses at infinity are not affected.

The boundary conditions along the upper surface y = 0 are that this boundary is free of external
stress,

y=0 : 0y =0, (1.10)
y=0: gy =0. (1.11)

The boundary conditions along the cavity boundary are that this boundary is also free of external stress.
These conditions can most conveniently be formulated in terms of the surface tractions ¢, and t,, see
figure 1.3. These surface tractions can be related to the stresses by the equations

ty = —Ogze8in S + 04y cos 3, (1.12)
ty = —0Ogysin B 4 oy, cos 3, (1.13)

where ( is the angle of the line connecting a point on the cavity boundary and the center of the cavity,
with the vertical axis, see figure 1.3. The boundary conditions along the cavity boundary are

r=rsinf,y=—-h—rcosf : ty = —0gzsin B+ oyycosB =0, (1.14)

r=rsinf,y=—-h—rcosf : ty, =—0gzysinf + oy, cosf =0. (1.15)



Figure 1.3. Stresses along cavity boundary

1.2 The solution method

The problem is solved by a superposition of three partial solutions, which will be considered separately
in further chapters of this report.

The first partial solution represents the stresses due to gravity in the half plane y < 0, without the
cavity. This is a simple elementary solution.

The second partial solution is Melan’s solution for a concentrated vertical force in a half plane,
representing the effect of the removal of the weight of the material. This solution, which can be found in
the literature, will be rederived, and formulated in terms of complex potentials.

The third (and final) part of the solution applies to the half plane with a circular cavity, such that
the stresses at the cavity boundary are annulled. The general solution of this problem has been given in
chapters 7 and 8 of the earlier report (Verruijt, 1996), and will be presented briefly in this report. The
solution requires the representation of a function F, representing the integrated surface tractions along
the cavity boundary, in the form of a Fourier series, with the periodic parameter 6 being the angular
coordinate along the inner boundary CDC in the (-plane. This function F' is related to the complex
stress functions ¢(z) and ¥(z) by

F:i/s(tx—i-ity)ds:¢(z)+zm+w(z)—C, (1.16)
0

where t, and t, are the components of the surface tractions, and where C' is an arbitrary integration
constant. In the (-plane the function F is to be considered along the boundary ¢ = aoc = aexp(if). Its
Fourier series expansion is written as

F(0) = Y Byexp(ike). (1.17)

k=—o00

In order to determine the coefficients By using Fourier analysis it is required not only to solve the first
two partial problems, but also to determine the value of the function F' for these two parts of the solution,
as a function of . This will be elaborated in the next two chapters.



2. First partial solution : stresses due to gravity

The stresses due to gravity in an undisturbed half plane y < 0 are supposed to be

Oyy = VY, (2-1)
oz = Kovy, (2'2)
Ozy = 0, (2.3)

where v is the unit weight of the material, and K is a given constant, the coefficient of lateral earth
pressure. In Mindlin’s original paper (Mindlin, 1940) only the values Koy = 0, Ko = 1 and Ky =
v/(1—v) were considered. Here the value of the coefficient Ky is considered as an independent parameter,
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Figure 2.1. Surface tractions along circular boundary

determined by the geological history.

In order to be able to later annul the surface tractions along the cavity boundary the surface tractions
at this boundary due to the first partial solution must be determined. These surface tractions along the
cavity boundary (see figure 2.1) can be related to the stresses by the equations (1.12) and (1.13). In this
case these surface tractions are found to be

ty = —Koyysin g, (2.4)

ty = vy cos S. (2.5)

The boundary function F is defined by (1.16),

F:i/ (ta + it,) ds, (2.6)
0

where the integration path should be such that the material (outside the cavity) lies to the left, when
traveling along the integration path. This means that ds = —rdf3. Because on the boundary of the
cavity y = —h — r cos 3, it follows that the boundary function F' for this part of the solution, which will

be denoted by Fi, is
)2 B &
”Y_T = —/ [hcos B + rcos® 3] df — iKo/ [hsin B 4 rsin B cos §] dS. (2.7)
0 0

Elaboration of the integrals gives

% =—1rB—irsin28 — hsin 8 — iKo[h(1 — cos ) + 17(1 — cos 23)]. (2.8)



The first term in the right hand member of eq. (2.8), —%rﬁ, is the only one that is not periodic when
the circular cavity boundary is traversed, from 3 = 0 to § = 2w. This is because the integral over the
entire cavity boundary represents the resultant force, which is equal to the total weight of the material
(ymr?) inside the cavity. Before attempting to annul the stresses along the cavity boundary, the solution
of Melan for a force in a half plane will be added as the second part of the total solution, in order to
balance the resultant force first.

The expression (2.8) gives the integrated surface traction F; as a function of 3, the angular coordinate
along the circular boundary in the z-plane, see figure 2.1. Later this quantity is needed, however, as a
function of 6, the angle along the inner circular boundary in the {-plane. For that reason we will now
first derive a relation between these two angles.

The conformal transformation is

L 1—-a?21+¢

z=w(() = —ih TTaZ1 ¢ (2.9)

where « defines the geometric parameter r/h, the ratio of the radius of the circular cavity to its depth,
see figure 1.2,

r 2a

—=—. 2.10

h 1+a? ( )
Along the inner circular boundary in the (-plane ¢ = ac = aexp(if). With (2.9) this gives, after some
mathematical manipulations,

x (1 —a?)sinf

- = 2.11

r (14+a2)—2acosb’ (2.11)
h 1 2 0—2

y+ :_( + a?) cos a (2.12)

r (1+a?)—2acost

It can easily be verified that these equations indeed represent a circle of radius r around a point at a
depth h, because

2+ (y+h)? =r% (2.13)
The angle § can be expressed as

z  (1-—a?)sing
y+h (1+a2)cosd—2a’

tan = — (2.14)
Special care should be taken to ensure that the value of 8 is defined such that it varies continuously
from 8 = 0 to 8 = 27 in the interval from 6 = 0 to 6§ = 27. This can be accomplished by modifying
the standard function ¢ = arctan(y/z) in such a way that for values of x and y in the four quadrants
the value of the function varies continuously from 0 to 27 when 6 varies from 0 to 27. The function is
denoted as t = at(x,y), and it is defined by the following C-function.

double at(double x,double y)
{
double ax,ay,a,t,pi;
pi=4*atan(l) ;ax=fabs(x);ay=fabs(y);a=atan(ay/ax);
if (y<0) {if (x<0) t=pi+a;else t=2*pi-a;}
else {if (x<0) t=pi-a;else t=a;}
return(t) ;

}
The function Fy can be calculated from the formula (2.8), which can also be written as

8 smzﬂ_lﬁsmﬁ_@[g(l_mw”%(l_mgzg)], (2.15)

yrr2  2m 4T T




where the value of 3 can be calculated from the the relations

a2V

r_r (1 —a®)sinf , (2.16)

h  h(l+a?)—2acosb

Y r (1+a?)cosf — 2a

h : h(1+a?)—2acosf’ 2.17)
y x

—at(— 1,5 2.1

f=at(-3—1,3) (2.18)

OI
Figure 2.2. 8 as a function of 6, for « = 0.8
As an example the relation between 6 and 3 for o = 0.8 is shown in figure 2.2. The data for this figure

have been calculated using the C-function given above. It may be noted that for # = 0 the function
F} = 0, which is a consequence of its definition. For = 27 we have g = 2x.



3. Second partial solution : Melan’s solution

The second part of the solution is Melan’s solution for a concentrated force in vertical direction, applied at
a depth & in the half plane y < 0, see figure 3.1. This represents one of the major effects of the excavation
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Figure 3.1. Half plane with concentrated force

of a tunnel, in particular the effect of the different weight of the tunnel compared to the weight of the
excavated soil. If the weight of the tunnel is zero, the force in upward direction is y7r?2.

In the literature three methods are used to derive the solution: bipolar coordinates, complex variables
and Fourier transforms. This chapter mainly follows the presentation of Sneddon (1951), with some more
details, and using complex variable notations as far as possible. Except for an irrelevant difference in
notation the solution presented in this chapter is in agreement with the results given by Sneddon (1951)
for this problem.

3.1 Force in infinite medium

For a concentrated force P in the negative y-direction, applied at the point z = ¢h of an infinite medium,
see figure 3.2, the complex potentials are supposed to be

iP .
W(z) = #P_V) [(3 — 4v) log(z — ih) + - _Zih]. (3.2)

The validity of these functions is postulated here. Because the functions are analytic throughout the
entire plane, except at the point z = ¢h and at infinity, the basic equations of the theory of plane strain
elasticity are automatically satisfied. It will be shown in this section that the singularity in z = ih indeed
describes a concentrated force of magnitude P.

It follows from (3.1) and (3.2) that

P 1
8r(l —v) z—ih’

P 1
8n(1 —v) (2 —ih)?’

¢'(2) =

o) = -




Figure 3.2. Force in infinite medium

S L P 2
2 z —ih  8n(1—v) (z —ih)?’

The stresses can be determined from the Kolosov-Muskhelishvili formulas,

Ogq + Oyy = 2[¢/(z) =+ ¢/(Z)]a

Oyy — Ozz + 2i0my = 2[2(25”(2) + 1/’/(2)]

This gives
__ Pu
oz + Tyy = 27(1 —v)r?’
Oyy — Ozz = ﬂ[—ﬁj—kﬁ]
vy T om(1 —v)r? r2 ¥
200y = L (1 —20)+ 2]
Tay = 27(1 — v)r? v r2 ¥
where

ri=a’+yi =2+ (y—h)”.

The stresses are found to be

Py 2y3
o = —— 11 2) — U
7 (1 —v)r? [( +2v) r? ]
Py 2y3
1-2 —
Tuy Am(1 —v)r? [( )+ 2 ]’
Px 292
= —— (1 —2) 4 24,
Tay 4m(1 —v)r? [( v)+ r? ]

In polar coordinates around the point z = ih, see figure 3.3, these expressions can be written as

P

- sin6[(1+2v) —2sin?6
Ar(1 — v)r sin L [(1+2v) sin” 61,

Oxx =

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Figure 3.3. Polar coordinates
. .2
Oyy = pre sinfy [(1 — 2v) + 2sin” 64 ], (3.16)
cos b1 [(1 —2v) + 2sin” 6y]. (3.17)

oy = 4dr(l —v)r

The component in y-direction of the traction upon an element of a circle around z = ¢h is denoted by
ty, see figure 3.4. The magnitude of this surface traction can be expressed into the stress components by

Y1

Figure 3.4. Surface traction

the relation
ty = —0oyysinéy — oy, cosb. (3.18)

With (3.16) and (3.17) this gives, after some trigonometric substitutions,

P n P
2rr; 4Ar(l—v)r

ty = cos 20;. (3.19)

This expression shows that the stress distribution indeed describes the case of a concentrated force of
magnitude —P applied at z = ih, because the integrated surface traction along any circle of radius r;
equals —P,

27
/ ty T1d91 =-—P. (320)
0

In a similar way it can be shown that the resulting force in z-direction is zero, and that the resulting
moment also vanishes.

For the sake of completeness the stress components will also be expressed in polar coordinates. These
can be obtained using the general relations

Opr = Ogy COS 01 + Oyy sin® 0; + 20,y sin 6y cos by, (3.21)

01 = Ozpsin® 01 + Oyy cos? 6y — 20,y sin by cos 0y, (3.22)



Ort = (Oyy — Ozg)sinby cosby + Ugcy(cos2 61 — sin?6;). (3.23)

Using these relations it follows that

P
= — L (3 2)sing,, 24
o yE g (3 —2v)siné; (3.24)
r (1 —2v)sinf (3.25)
op=————(1—-2v)sin .
" 4dr(l — v)r b
P (1 —2v)cosb (3.26)
ot =———(1-2v . .
YT a1 =) !

The formulation in terms of complex potentials enables to derive closed form expressions for the
displacements, using the formula

2p(ue +iuy) = £p(2) — 2¢'(2) = ¥(2), (3.27)

where for plane strain

A+ 3u
Sl v (3.28)
With (3.1), (3.3) and (3.2) this gives
; P )
2p(ug + iuy) = yp ) [(3 —4v)logry + cos 6y exp(2i6;)]. (3.29)

Separation into real and imaginary parts gives

o= ————— sinf cosfy, .

U e C— sin 0y cos 6, (3.30)

Uy = _r [(3 —4v)logry + cos® 61]. (3.31)
Y 8mu(l —v)

In terms of x and y; these expressions can be written as follows

P Ty
T — s 32
“ 8ru(l—v) r? (3:32)
P x?
=—|(3—4v)1 |- 3.33
W= T [( v)logry + rf] (3.33)

To these displacements an arbitrary rigid body displacement may be added, to ensure that a certain
point in the field is fixed in space. The displacements at the singular point z = ¢h are unbounded, and
so are the displacements at infinity.

The expressions given above are in agreement (perhaps apart from a rigid body displacement) with
those given in the literature (Sneddon, 1951; Green & Zerna, 1954). The solution for the stresses was
given by Melan (1932), see also Coker & Filon (1931).

3.2 Force in semi-infinite medium

The solution for a concentrated force in the interior of a semi-infinite medium is built up of three solutions:
the solution for a concentrated force at z = 0,y = h, a force in opposite direction at x = 0,y = —h, and
a balancing stress distribution to be determined such that the normal stresses at the boundary y = 0
vanish.

10



Figure 3.5. Two opposite forces

3.2.1 Force and image force

On the basis of the solution presented in the previous section the solution for a force at z = ¢h and an

image force of opposite direction at z = —ih, see figure 3.5, can be written as
iP z —1ih
() S =) T (3.34)
iP z —1ih z z
=——|(3—4v) ] — . .
v = gra o (3 =) dog ==+ — = 5 (3.35)
Differentiation of these expressions with respect to z gives
N iP 11
¢(2) = 8r(1 —V)[Z—ih z—|—ih]’ (3.36)
we N GP 1 B 1
O e L ET A R prar L (3.37)
oy W11 _ P z _ z
vi(z) = 2 [z—ih Z—|—ih] 8m(l —v) [(z—ih)Q (z—|—ih)2]' (3.38)
Using the Kolosov-Muskhelishvili formulas (3.6) and (3.7) it follows that
P v oveq 207 298 }
= ———(1+20)|5 - 5| — S5+ ==, .
7o = A= 2~ ) T (3.39)
P iy 207 298 }
=—<(1-2) |5 -S|+ 5 — = 4
Tyy 4dr(l —v) {( v) [T% Tg] + Til T% ’ (3.40)
P {(1 2)[3: 3:]+23:y% 23:y§} (3.41)
Opy = ——— - 2V)| = — = — , .
Y 4r(1—v) r?  r2 ri r4
where 7 is the distance from the point x = 0,y = h, and 75 is the distance from the point z = 0,y = —h,
ri=a" +yi =a®+ (y—h)? (3.42)
rs =2 +ys =2+ (y+h)* (3.43)

11



The displacements are, using (3.27),

P Ty XY
= _ , 3.44
v 8mu(l —v) [ r? r2 ] ( )
P r x?  x?
= —4v)log — + — — —|. 4
U= T [(3 — 4v)log T 7 T%] (3.45)

Because of the symmetry of the problem it is now found that the displacements at the origin z =y =0
are zero. This is not essential, and again an arbitrary rigid body displacement might be added to the
displacement field described by (3.44) and (3.45), without affecting the stresses.

The expressions for the displacements and the stresses can perhaps be expressed more conveniently
using bipolar coordinates about the two singular points, see figure 3.6. This gives

Figure 3.6. Bipolar coordinates

P inf in 2sin®6;  2sin® 6
Ory = {(1+2y>[sm 1 _sm 2]_ S 1+ S 2}, (346)
dm(1—v) T1 T r1 T
P sinf;  sinfy, 2sin®6; 2sin® 6,
=—J(1-2 - - } 3.47
Ty 47T(1_V){( 2l o gt (3.47)
0uy = P {(1_21/)[008,91 _00392]+2Sin291c0391 _2sin29200392}, (3.48)
dr(1—v) r1 ) 1 ro
= —% [sin 01 cos 01 — sin 65 cos 92], (3.49)
“ 8ru(l —v)
Uy = L[(3—4V}1ogr—l+00329 — cos® 0] (3.50)
Y 8mu(l —v) o ! 2 '

It may be noted that for y = 0: 0y = 0 and u, = 0. This means that the present solution applies to a
concentrated force in a semi-infinite medium if the boundary y = 0 is rigid and smooth.

The Melan problem refers to a semi-infinite medium with a free boundary at y = 0. In the solution
presented above the stresses at the boundary are

y=0: Ogy = 0, (3.51)

P h 2h?

y=0 : ayy:_QW(l_VMQJth[(1—2y)+7x2+h2].

(3.52)
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The first of these equations is a consequence of the anti-symmetry of the problem. The second expresses
that there is a compressive stress at the axis y = 0, which is in agreement with physical intuition, taking
into account that the loading consists of two opposite forces, both acting towards the axis y = 0.

If this solution is considered for the half plane y < 0 only, it appears that the condition that the
shear stress is zero at the boundary is satisfied, but the condition that the normal stress is zero at the
boundary is not satisfied. In order to correct that boundary condition a solution for a half plane with
a normal stress distribution opposite to the expression (3.52) must be added. This is considered in the
next section.

3.3 The balancing solution

In order to complete the solution a problem for the half plane y < 0 is considered, with the boundary
conditions

y=0 : 0y =0, (3.53)

P h 2h?

y=0: oy =q(z) = 27r(1—1/)x2+h2[(1_2y>+x2+h2]'

(3.54)

This problem can be solved by the complex variable method, or by the Fourier transform method. In
this chapter the Fourier transform method (Sneddon, 1951) will be used, see also Appendix A.

3.3.1 Fourier transform solution

The Fourier transform method leads to the solution

Uy = / A (1 + may) exp(ay) sin(ax) da, (3.55)
0
Uy = / A (1 4+ m — may) exp(ay) cos(ax) da. (3.56)
0

where A is given by

A*Ll/m()co( )d (3.57)

= a ), q(zx) cos(ax) dz, .
and m is an elastic coeflicient, related to Poisson’s ratio v by
! (3.58)
m = . .
1-2v

It follows from equation (3.55) and (3.56) that

e= Oy + Ouy = 2/ A aexp(ay) cos(ax) da, (3.59)

ox Jy 0

Furthermore

. Oug _%727” /OoAa2ex (ay) cos(azx) da (3.60)
and

g= 8(;;; + % = 2my/0 Aa? exp(ay)sin(ar) da. (3.61)
The stresses can be expressed into these three quantities by the following relations

Oz = Mpe + uf, (3.62)

Oyy = mpe — pf, (3.63)

13



Ozy = UG- (3.64)

In the present case the function A is, with (3.57) and (3.54), and using standard Fourier integrals as
found in Bateman (1954) or in Appendix B,

P

= T —via [2(1 — v) + ah] exp(—ah), (3.65)
It now follows that
mye = —ﬁ [2(1 - y)f—% n W], (3.66)
= _% (1 - V)xzéyf B 2hyl(3f?2 - y?)], (3.67)
119 = —% [2(1—v) 22‘7{1 2h$(xi?_ 307) ], (3.68)

where, as before,
=24y =22+ (y—h)* (3.69)

It must be noted that the value of y is always negative, because the half plane y < 0 is considered.

The stresses are found to be

S | y(z’ - y%’)] ___Ph [332 —4y%’  2yyi (32° — yf)], (3.70)
Ty ] 2r(l—v)*" i r$
oy = —2 [0 y(z’ - y%’)] ___Ph [332 —ui | 2y (30 - yf)], (3.71)
Ty ] 2r(1—v)t rf r$
2 _ 9.2
oy = _g 2xryilyl a 27T(113}i v) ny(xr? 3y1)' (372
In order to evaluate the displacements the following integrals are needed
J1 = /000 éexp(—ah) sin(ax) do, (3.73)
Jo = /000 éexp(—ah) cos(ax) do. (3.74)
These integrals are derived in Appendix B. The result is
J1 = /000 éexp(—ah) sin(az) do = arctan(%). (3.75)

o0

1

Jy = / — exp(—ah) cos(ax) da = —log /2 + h2. (3.76)
0 (0%

It should be noted that the integral Jo is determined up to an arbitrary integration constant. This inte-

gration constant remains undetermined, because the singularity in the integral cannot be removed. Here

it is assumed that the form (3.76) can be used, except for an arbitrary integration constant. Physically

this integration constant can be considered to represent a rigid body displacement.

The expressions for the displacement components now are found to be
P(1-2v) Px(y+h)  Phz(r? +2yy1)

x

Uy = o arctan(y—l) + 2 drp(l = o)l (3.77)
P(1 - Py? Phy(x? — 3

Uy = _Pa-v) logr + y12 y(@ y14>. (3.78)
T 2rury  Anp(l —v)r]

This completes the third part of the solution.
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3.4 Complex variable solution

Now that the solution is known, the complex potentials can be back-calculated from the expressions for
the stresses, using the formulas (3.6) and (3.7). This gives

¢(z) = —% log(z — ih) + ﬁﬁ, (3.79)
P ) P(1-2v) h P hz
(=) = Com log(z —ih) - dr(l—v) z —ih + Ar(1 —v) (z —ih)2’ (3.80)

It should be noted that these potentials denote the third solution only. For the full solution of the problem
the potentials (3.34) and (3.35) must be added.
The derivatives of the potentials (3.79) and (3.80) are

P 1 P h

o(z) = 2mz—ih  Ar(1—v) (2 — ih)?’ (3:81)
L, AP 1 P h

) = e T A i (3.82)

V() = P z P hz (3.83)

2w (z—ih)?2  2x(1—v) (2 —ih)?

It can easily be verified that the stresses as determined from these expressions using the formulas of
Kolosov-Muskhelishvili are in agreement with the expressions (3.70), (3.71) and (3.72) derived above.
The expressions (3.77) and (3.78) can be recovered by the formula (3.27), except for a constant factor,
which is irrelevant because a rigid body motion can always be added to the displacements.

3.5 Complete solution

The complete solution of the problem of a force of magnitude P, acting in positive y-direction in the half
plane y < 0 is obtained by addition of the solution for the two opposite forces in an infinite medium,
as given by equations (3.34) and (3.35), to the balancing solution given by equations (3.79) and (3.80).
This gives

iP z—1th P P h
= 1 - —1 —ith) 4+ ————— .84
¢(2) 8r(1 —v) L Tih 21 og(z —ih) + Ar(1 —v) z —ih’ (3:84)
iP z —1h ih ih
=——|(3—4v)1
(=) 8w(l —v) (3 —av) ng+ih+z—ih+z+ih]
iP ) P(1-2v) h P hz
o log(= —ih) - d7(1 —v) z —ih + 4d7(1 — v) (2 —th)?’ (3.89)

The value of P here represents the weight of the material excavated from the cavity, i.e. P = ymr?.
Differentiation of the expressions (3.84) and (3.85) with respect to z gives

P 1 1 P 1 P h

¢'(2) = 8 (1 —V)[z—ih B z—i—ih] C2rz—idh  An(1—v) (z —ih)?’ (350
b iP 1 1 P 1 P h
L R CESt LA B R = e ER e ey e %50
, P 1 1 iP z 2
VO = ral wa—s eoar  Grap
Pz P he (3.88)

2w (z—ih)?2  2x(1 —v) (z —ih)?
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The integrated surface traction F' can be derived from these expressions using eq. (1.16). In the present
case the value of this function will be denoted by Fj,

Fy = ¢(2) +2¢'(2) + ¥(2) = C. (3.89)

The values of the function F» must be evaluated for points on the inner boundary, and they must be
calculated as functions of 0, the angular coordinate along that boundary in the (-plane. For this purpose
it is perhaps most convenient to use a number of polar coordinates in the z-plane as well,

z = roexp(ify), (3.90)
z —ith = ryexp(iby), (3.91)
z + th = roexp(i6s). (3.92)

Starting from a given constant value of «, and variable values of the angle 6, the coordinates = and y
can be calculated from (2.11) and (2.12). The polar coordinates can then be calculated, taking care that
continuous values are obtained for the three angles 6y, 6; and 6. For definiteness it is assumed that
0 =0, 0; =0 and 6, =0 for a point located far away on the positive z-axis, see also figure 3.7.

y

TQ

Figure 3.7. Tripolar coordinates

The three terms that together constitute the right hand part of eq. (3.89) can be written as

P P P h
P(z) = m[(‘% —61) +ilog :—:] + %[91 —ilogr] + A=) exp(—if1), (3.93)
— . P
() = —m{:—?exp[i(ﬁo +600)] — = expli(fo + 0:)]}
. P P h
5 7o expiClo +61)] - m%{? expli(fo + 261)], (3.94)
T = gy 3= (B2 = 60) = ilog 4]+ (61 + ilogr

_ﬁ[% exp(i1) + %exp(%)]
_%g exp(if;) + ﬁf;—? expli(20; — 6p)]. (3.95)
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The boundary function F3 is the sum of these three terms, except for the integration constant C'. It can

be written as

BR+C 1 i 1—20 . r 1 h _
=—(01+02) — — log(— - n —ib
ymr? 27T( 1+ 62) dr 1—-v Og(Tz) * dr(l —v)rq exp(—ifh)
¢ To . To . 7 To .
S s y){rl expli(fo + 01)] — - expli(fo + 92)]} +o- o expli(fo + 61)]
1 h To . 1 h ) h '
_— 0o +20,)] — —— {1 0+ 0
dr(l—v)rim expli(fo +261)] 8m(l —v) {Tl exp(if) + T exp(i 2)}
11-2vh 1k
- vn exp(ify) + - nh exp[—i(fy — 261)]

A 1—v 1

(3.96)

The only non-periodic term in this expression is the term 65, which varies from —m/2 to 37/2 when 6
goes from 0 to 27. The coefficient of this term is 1/27. This factor will thus precisely cancel the resultant
effect of the factor —3/27 in the first part of the solution, see (2.15). It may be concluded that it can
be expected that the integrated surface tractions, when adding the first and second partial solutions, are
periodic in 6, with a period 27. This will not only facilitate the application of Fourier analysis, but it is
an essential condition for the possible success of the complex variable method for deriving the third part
of the solution. It is now certain that this third partial solution has to balance only the variations in the

surface tractions at the cavity boundary, without the need for a resultant force.
The integration constant C' may be determined by requiring, arbitrarily, that for § = 0
The stresses and displacements are not affected by this constant.
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4. Third partial solution

In order to balance the stresses at the boundary of the cavity a third solution must be added, which
annuls the stresses generated at the boundary of the cavity by the first two solutions. This third solution
is derived in this chapter.

The solution is obtained using a conformal mapping of the region in the z-plane onto a circular ring in
the {-plane, see figure 4.1. The upper boundary in the half plane must be free of stress, and the stresses

Y n

BxA< B ¢

Figure 4.1. Conformal transformation

along the boundary of the circular cavity are prescribed.
The conformal transformation is

1—a?1+¢
= = - 4.1
2= w(Q) =~z e (1.1)
where « is the radius of the inner circle in the {-plane, the radius of the outer circle being 1.
The radius r of the circle in the z-plane is
2a
=h . 4.2
r=hir5 (4.2)
If the covering depth of the circular cavity in the z-plane is denoted by d, see figure 4.1, it follows that
(1-a)?
d=h—. 4.3
1+a2 ( )

If @ — 0 the radius of the circular cavity is practically zero, which indicates a very deep tunnel, or a very
large covering depth. If o — 1 the covering depth is very small. For every value of d/h the corresponding
value of « can be determined from (4.3).

The origin in the z-plane is mapped onto ( = —1, and the point at infinity in the z-plane is mapped
onto ¢ =1, see figure 4.1.

The solution of any elastic problem can be described by two functions, ¢(z) and (z), which must be
analytic in the region occupied by the material, that is the part of the half plane y < 0 outside the circular
cavity. If the stress distributions along all boundaries are equilibrium states, which they are in this case,
the functions ¢(z) and 1)(z) are analytic and bounded up to and including the boundaries. Through
the conformal transformation (4.1) the functions are transformed into functions of ¢, to be denoted by
¢(¢) and ¥(¢). These functions must be analytic inside the circular ring o < |¢| < 1 in the (-plane, see
figure 4.1. This means that they can be represented by their Laurent series expansions,

$(Q) =ao+ Y arct+ b, (4.4)
k=1 k=1

Q) =co+ Y e+ diCF, (4.5)
k=1 k=1
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These series expansions will converge up to the boundaries |(| = 1 and || = «. The coefficients ay, by, cx
and dji must be determined from the boundary conditions. It may be noted that there are no coefficients
bo and dy. This will sometimes be interpreted as by = 0 and dy = 0.

By considering the problem as a superosition of three parts, where the first partial solution represents
the stresses at infinity, and the second one accounts for the total force on the half plane (which implies a
logarithmic singularity in the stress functions and the displacements, but vanishing stresses at infinity),
it has been assured that the third partial solution only has to account for a system of variable stresses
at the boundary of the cavity, but these stresses together form an equilibrium system, for which the
stresses and displacements at infinity vanish, and thus the stress functions ¢(z) and ¢(z) can be assumed
to vanish at infinity too. This will later appear to be an essential condition for this third part of the
solution, thus confirming the importance of separating the problem into three parts.

A constant rigid body displacement, which is represented by constant values for the stress functions,
may be added later, if desired to annul the displacements at a particular point. This means that it can be
assumed that the series expansions (4.4) and (4.5) converge also on the boundaries |¢ = 1| and |( = «f.
It may be noted that this assumption also excludes a stress free rigid body rotation of the half plane,
which is represented by the stress functions ¥ = 0,¢ = iz. Such a solution might be included in the
solution by adding a term (14 ¢)/(1 — {) to the function ¢(¢) in equation (4.4), and taking it along as a
separate term in all subsequent derivations. It is more convenient, however, to omit this term, under the
assumption that a rigid body rotation may be added later, if desired.

In general the boundary condition for a given surface traction can be expressed in terms of the
integrated surface traction

¢o
FulG) =i [t i) ds. (4.6)

where t, and t, are the given surface tractions, (; is an arbitrary starting point on the boundary consid-
ered, and (p is a variable point on that boundary. The subscript 3 has been added to indicate that the
problem considered is actually the third part of the total solution. In general the boundary condition is

FalGo) + C = 6(co) + 2L FT6T + Tca), (47)

w'(Co)

where (j is a point on the boundary, and C is an integration constant, which in general will depend upon
the starting point {;. Without loss of generality the constant C' can be assumed to be zero along one of
the boundaries (Sokolnikoff, 1956). This will be done for the outer boundary. On the inner boundary
the integration constant has to be considered as an unknown parameter.

Differentiation of the mapping function (4.1) with respect to ¢ gives

2ia
V() = ———ss. 4.8
€)=~ (18)
On a circle in the ¢-plane we have ¢ = ¢y = po, where o = exp(i6). Then (o = po—'. This gives
AT

@) _ (o)l =) W)

=) (01— o)
4.1 Outer boundary
On the outer boundary the radius p = 1. Then {y = 0 = exp(if). The expression (4.9) now is

wlbo) _ L1—072). (4.10)

w'(Co)

On this boundary the value of the integrated surface traction function F5((p) = 0. It is furthermore
assumed that on this boundary the value of the integration constant C' = 0, which may be done for one
boundary without loss of generality (Sokolnikoff, 1956).
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Substitution of (4.10) into the general boundary condition (4.7) now gives, using the expressions (4.4)
and (4.5) for the stress functions,

Z apo® + Z beo F + %Z(k + Daggio "~ — % — 1)b_10"
k=1 k=1 k=1 k=2
—% k—1l)ag_i0~ %Z(k—i—l)bwﬂak—i—ao—i—%&_l-i-%a
k:2 k=1
e+ Y o P+ Y dwot =0. (4.11)
k=1 k=1

This is a power series, the sum of which must be zero. That will be the case for all possible values of o
if (and only if) the coefficients of all powers are zero. This leads to a set of equations from which the
coefficients ¢ and di can be solved. The result is

Co = —ag — 1&1 ;bl, (412)
cr =D+ 30— Dary — b+ Darys, k=123, (413)
dy = = + 5(k = Dbg—1 — 5(k + 1)1, k=1,23,..., (4.14)

One half of the unknown coeflicients have now been expressed into the other half. It may be noted that
for k = 1 the last two expressions each contain a non-existing term, but with a factor 0. If the coefficients
ar, and by can be found, the determination of c; and dy, is explicit and straightforward.

4.2 Inner boundary

On the inner boundary the radius p = a, and (o = ao. Equation (4.9) now gives

w(¢p) _ —ao— (1-20%)+a2—a?)o~t - a2072' (4.15)

W' (Co) 2(1 — ao)
In contrast with the case of the boundary condition at the outer boundary, where the factor representing
the conformal transformation was very simple, see (4.10), this factor appears to be a rather complicated
expression at the inner boundary, especially because of the appearance of the factor (1 — ao) in the
denominator of (4.15). In order to eliminate this difficulty, all the terms in the boundary condition are
multiplied by this factor. It may be noted that this factor is never equal to zero inside the ring in the
(-plane, because o < 1.

The boundary condition (4.7) is now written as

w(o)
w (Co)

¢ (Co) +v(Co) | (4.16)

F*(Go) + C(1 = Go) = (1= Go) [9(Go) +
where

F3 (o) = (1 — o) F5(Co), (4.17)

and (y = ao.

The advantage of writing the boundary condition in the form (4.16 is that now the singularity in the
second term of the right hand side has been removed. All the terms can be expressed as a series of powers
of o.

It is assumed that in the boundary condition (4.7) the function F((p) can be written as

F5(¢o) = F3(ao) Z Byo*®, (4.18)

k=—o0
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where the coefficients By, are given, or can be determined, for instance by Fourier analysis. The modified
boundary function Fy({p) is written as

F5(G) = Fi(ao) = Y A", (4.19)

k=—o0

The coefficients Ay, can easily be calculated from the coefficients By, using the definition (4.17). The
result is

Ak :Bk —Oszfl, k= —00,...,00. (420)

Thus the coefficients Ay can also be considered as known.

Substitution of the expressions for the stress functions and the boundary function (4.19) into the
modified boundary condition (4.16) again leads to an equation in the form of a power series, with negative
and positive powers o*. The coefficients ¢, and dj can be eliminated from this series using the equations
(4.12) — (4.14). If the equation is written such that the sum of the power series is zero, it follows that
the coefficients of all powers of ¢ must be zero. After some tedious but elementary algebra this leads to
the following set of recurrent equations

(1= )apir + (1= a®)(k + 1)bgy1 =
=a?(1 - a®Map + (1 — a®)kby, — App10™, E=1,2,3,..., (4.21)

and

(1—a?®)a® (k+Dags1 + (1 — )by =
=1 -aba*kar + (1 —a®op — A_pa*, kE=1,2,3,.... (4.22)

From these equations the coefficients ayy; and bgy1 can be determined, if ay and by are known. This
requires the solution of a system of two equations with two unknowns. The solution can be given explicitly,
of course, but it may well be more convenient to solve the system numerically.

It may be noted that the homogeneous system (obtained when Ay = A_; = 0) admits a solution

Ak = A,k =0 : ap+1 = —bk+1 = ar = —E. (423)

This property will be used later. The formal solution of the system of equations (4.23) has no physical
significance. If all the coefficients in the two series expansions in eqgs. (4.4) are equal, the first series
converges inside the unit circle, representing the function 1/(1 — ¢) in that region, and the second series
converges outside the unit circle, representing the function 1/(1 — ¢) in its own region of convergence.
The sum of these two series does not have a common region of convergence, however, and therefore is a
meaningless solution.

Equations for the starting coefficients a; and ay can be obtained from the conditions that the coeffi-
cients of 0% and o! must be zero. This gives

(1—a®)(a1 +b1) + C = —Aq, (4.24)

(1-a®)(a1 4+ b1) — Ca® = —Aja, (4.25)
It follows from (4.24) and (4.25) that

C+Ca® =—A4A) + Aa, (4.26)

which determines the integration constant C.

All the coefficients can now be determined successively, except for the constants ag and (ay +b1). The
constant ag represents an arbitrary rigid body displacement, which produces no stresses in the material.
It can be left undetermined, or it can be chosen so that a certain given point is fixed. Of the constants
a1 and by only the combination (a; 4 by) is determined by the conditions (4.24) and (4.25). Its complex
conjugate (a7 + b1) remains undetermined by the equations given above. This difficulty can be removed
by noting that the convergence of the series expressions (4.4) and (4.5) for the stress functions ¢ and ),
for all values of ¢ in the ring o < |] < 1, and in particular for { = 1, requires that all coefficients tend
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towards zero if k — oo. Because the system of recurrent equations (4.21) and (4.22) is linear, and because
the homogeneous system of equations admits the solution (4.23), in which all coefficients az, and —by, are
equal, it follows that an arbitrary constant can be added to each of these coeflicients without affecting its
solution. This means that the first constant, say a;, can be determined by first assuming this constant
to be zero, then calculating b, from (4.24), and all further coefficients from a repeated application of
(4.21) and (4.22). It can be expected (and has been verified by performing the actual calculations) that
for very large values of k, say k = 1000, a constant limiting value, other than zero, is obtained for the
coefficients ai. The correct value of the coeflicients can then be found by subtracting that limiting value
from all coefficients aj and —by. The remaining coefficients ¢ and dj, can finally be determined from the
equations (4.12) — (4.14). This completes the solution.

It may be noted that the assumption that the coefficients tend towards zero for k — oo implies that
a singularity of the form 1/(1 — ¢) has been excluded. Inside the unit circle |¢| = 1 this function can be
approximated by the power series

A= =1+¢+C+C+.., (4.27)

which converges inside the circle, but not on it. Actually, this is the singularity in the conformal transfor-
mation function (4.1), corresponding to a stress function ¢ = cz. It can be shown that a stress function
¢ = cz denotes a constant stress solution (for real values of ¢) and a rigid body rotation (for imaginary
values of ¢). The constant stress solution violates the conditions at infinity, and the rigid body rotation
has been excluded specifically. By the inclusion of Melan’s solution as the second part of the solution
it can be expected that a singularity of the form ¢(¢) = log(1 — ¢) has also been excluded, so that the
coefficients aj should go to zero faster than the coefficients of the series 1 4 ¢ + %C 24+ %C 3+ %C‘l .... By
eliminating this singularity from the solution the derivative of ¢(¢) should also converge for |(| = 1.
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5. Fourier series solution

The boundary condition function F' for the third part of the solution has been denoted as F3, and the
requirement is that the boundary of the cavity is free of surface tractions,

Fi+ Fy 4+ F3=0. (51)
or
Fs = —F) — Fy, (52)

where the functions F; and F; have been given above, see (2.15) and (3.96). After some elementary
algebra the real and imaginary parts of F3 are found to be

Re(Fy) 7—20, 1 . 1h | 1—4v h h
= —sin28+ —— ———costh + ———cosf
N2 4 +47T S 6+7rrsmﬁ+87r(1—1/) 1 cos o+ 8m(l—v)ry costz
+ 32 10 G+ 01) + ———— " in(By + 6) L 70 Gngysin20,,  (5.3)
———— —sin ————sin — ————— —sinfysin .
8r(l —v)ry o 8r(l—v)ry o 2r(l—v)rirm 0 b
Im(F3) Koh k 11-2v 1 5—4v h .
= 2oty (1= cos28) + — log(X) + 22 " ging
yrr? ™ T( COSB)+47T( o8 6)+47T 1-v 0g(r2)+ 8r(l—v)r S
1 h . 3—4v 1y )
——— —sinfy - ————— 0o +61) — ———— 6o+ 6
+87T(1 —v)ry S 8r(l—v)r cos(fo +61) (1 —v)re cos(fo + 6z)
1 h
b D0 6o cos 26, . (5.4)

2r(l—v)rim

In these equations the parameters ro, r1, 2, 6y, 81 and 6 are tripolar coordinates, as defined in the
previous chapter, see figure 3.7. The angle 5 has been defined in chapter 2, see (2.18).

The boundary conditions for the third partial solution are defined by the values of the boundary
function F3 as a function of the tangential coordinate . In the solution procedure this function must be
approximated by a Fourier series expansion. Because the boundary function Fj is periodic, and its values
are bounded, it can be expected that convergence of the Fourier series will be good or even excellent.
This will be investigated next.

5.1 Fourier series approximation

In general the complex Fourier series is written as

Fs(z) = Z By, exp(ikz), (5.5)

k=—o0

where f(z) is a complex function of the real variable z, and the coefficients By, are also complex. These
coefficients are determined by the integrals

1 2m

By, F5(z) exp(—ikx) dz. (5.6)

o7 0
The integrals can be calculated numerically using a method originally developed by Filon (1928), see
Appendix C.

As an example the results for the case o = 0.5 (i.e. r/h =0.8), v = 0 and Ky = 0.5, will be presented
graphically. The results for the real part, Re (F'3), are shown in figure 5.1, and those for the imaginary
part, Im (F'3), are shown in figure 5.2. A constant factor has been added to both the real and imaginary
parts of the function, in order to make them zero for 8 = 0.

The fully drawn lines in the two figures give the analytical values, the dotted lines give the Fourier
series approximation, using 5 terms only. It appears that even with such a small number of terms the
approximation is reasonably good. For 10 terms or more the approximation can not be distinguished
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Figure 5.1. Fourier series approximation, real part

Figure 5.2. Fourier series approximation, imaginary part
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from the analytical results. The vertical scale in the figures is such that one unit corresponds to yrr?,
the weight of the material in the cavity.

The coefficients of the Fourier series expansion are calculated in the program FOURIER. In this
program the user must specify the values of «, v, K(, and the number of terms to be used in the Fourier
series analysis. The program will show the results on the screen, and it also produces some graphics files.

It appears from experience with the program FOURIER that the convergence of the Fourier series
is excellent for reasonably small values of «, indicating relatively small cavities. For large values of «,
corresponding to large cavities, say with r/h = 0.99, a large number of terms (up to 50 or 100) may be
needed in the Fourier series expansion. Such large cavities are not usually constructed, but the analysis
is still applicable, and convergence of the Fourier series is assured.

It appears from inspection of the Fourier coefficients that all of them are purely imaginary, see table 5.1.
This must be a consequence of the symmetry of the problem with respect to the vertical axis. It suggests

k Re(Bk) Im(Bk) RG(B,]Q) Im(B,k)
0 | 0.000000 | -0.518465 | 0.000000 | 0.000000
1| 0.000000 | 0.021635 | 0.000000 | 0.164873
2 | 0.000000 | 0.006621 | 0.000000 | 0.117124
3 | 0.000000 | 0.005933 | 0.000000 | 0.076359
4 | 0.000000 | 0.005065 | 0.000000 | 0.046871
5 | 0.000000 | 0.003734 | 0.000000 | 0.027712
6 | 0.000000 | 0.002503 | 0.000000 | 0.015977
7 | 0.000000 | 0.001579 | 0.000000 | 0.009044
8 | 0.000000 | 0.000956 | 0.000000 | 0.005049
9 | 0.000000 | 0.000562 | 0.000000 | 0.002787
10 | 0.000000 | 0.000323 | 0.000000 | 0.001525

Table 5.1. 20 Coefficients

that the coeflicients of the stress functions are all also purely imaginary, which simplifies the analysis.
Of course, strictly speaking, this can only be an assumption in this stage, which will have to be verified
later, by checking the actual boundary conditions in terms of the stresses.
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6. Analytical series expansion

In the previous chapters the Fourier series expansion of the boundary functions F (o) has been performed
by numerical evaluation of the Fourier integrals. It is of course more accurate, and probably much faster,
if a direct expansion in a Laurent type series can be obtained. Such an expansion will be derived in this
chapter.

Starting points are the basic expressions for the boundary functions for the first and second solution
given in previous chapters.

6.1 The gravity solution

For the first part of the solution, the solution for the undisturbed half plane loaded by gravity, the
boundary function is given by equation (2.15),

Fr B sin28 1h . iKo h )
5= o~ —psnf - — (1 —cosB) + 3(1 - cos23)], (6.1)

where P = ymr?, the weight of the material inside the cavity (a circle of radius 7), and where 3 denotes
the angle with the vertical, along the cavity boundary, see figure 6.1. The center of the cavity is located

I
|

Figure 6.1. Circular cavity

at the point z = 0,y = —h. It will be attempted to expand the expression (6.1) into a Laurent series,

Fi(o)= Y_ Bio*. (6.2)

k=—o0

6.1.1 Gravity : first term
On the boundary of the cavity x = rsin 3 and y = —h — 7 cos 3, so that

z + th = —ir exp(if3). (6.3)
The conformal mapping is, from (4.1),

o1—a?214¢
MMraz1-C

2= w(() = (6.4)

where « is the radius of the inner circle in the (-plane, the radius of the outer circle being 1. The radius
r of the circle in the z-plane is

2c
14+ a2’

I (6.5)
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It follows from (6.4) that
2ih  ( —a?

z+zh:—1+a2 = (6.6)
On the boundary of the cavity { = aoc = aexp(ifl), so that
2tha 0 —«
z41 T p— (6.7)
With (6.5) it follows that
1-—- 1-—-
z+th=—irc afo = —irexp(if) a/a' (6.8)
—ao —ao
Comparison with (6.3) shows that
1 —
exp(13) = exp(if) a/g. (6.9)
1—-ao
Taking logarithms gives
B=0+ilog(l —aoc)—ilog(l—ajo). (6.10)
The following standard function and its expansion will be used
Ck
To(¢) = log(1 — Z (6.11)
Using this notation equation (6.10) can be written as
B=0+iTy(ao) —iTo(a/o). (6.12)

Apart form the first term the function 5 has now indeed be expressed into a Laurent series. It is expected
that the first term, which is essentially non-periodic in 6, will cancel versus a similar term in the second
solution. Actually, this second solution has been introduced for that purpose.

It may be noted that

To(ao) — To(a/o) = —{aexp(if) + La” exp(2i6) + lag exp(3i6) +
—aexp(—if) — La® exp(—2if) — sa % exp(—3i0) — ...}, (6.13)

To(ao) — Ty(a/o) = —2i{asin(f) + 3o sin(260) + 1o’ sin(36) + ...}, (6.14)

which shows that 3 is real, as required.

6.1.2 Gravity : other terms

Equation (6.9) can be written as

1—
exp(iff) = o a/a' (6.15)
1—ao
Taking complex conjugates gives, using that 7 = 1/0,
1—-ao
exp(—iff) = — — (6.16)
ocl—ajo

It follows that

2cos(f) =0 1-ajo + 11-ao (6.17)

l—ac  ol-—a/o’
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or

1-a? ao 1-a? afo
2 = -2 . 1
cos(f) a+ gy o 1—ajo (6.18)
Using the notation
¢ o
10 =127 >k (6.19)
k=1
this can also be written as
1—a? 1—a?
cos(B) = —a + — Ty (ac) + ao‘ Ti(a/o). (6.20)
Because 2isin 8 = exp(if3) — exp(—if) it follows, using the same expansions, that
1—a? 1—a?
sin(8) = —i— Y Ti(ao) +i—ETi(a)o). (6.21)
o
In order to expand the functions sin 28 and cos 20 the following notation is introduced,
T3(C) = % = k¢ (6.22)
T-CF 2
This can be derived from (6.19) by differentiation with respect to ¢.
From (6.15) and (6.16) it follows that
l1-—a/o)? 1 (1-ao0)?
2c0s28 = 0 ¢ — : 6.23
cos2f=o 1-ao)?2 o2 (1—a/o)? (6:23)
The first term can be written as
_ 2 oA 4232
o (1 —ajo) _ o _1-a" ao (1-a?) ao , (6.24)
(1-ao)? a2 l1l—ao a? (1—-ao)?
and the second term can be written as
1 (1—ao)? 2 1-ao* a/o +(1—a2)2 alo ' (6.25)
o2 (1—a/o)? a2 l1-—ajo a? (1-a/o)?
Using (6.22) it now follows that
1— 4 1— 2\2
0528 = a® — — [Ty (ao) + Ti(a/o)] + d-o) [Ty(a0) + To(a/o)]. (6.26)
202 202
Because 2isin 283 = exp(2i3) — exp(—2i03) it follows, using the same expansions, that
. 1-—at (1= a?)?
sin2f = 5o [Ty (ao) — Ti(afo)] — z% [T2(ao) — To(a/o)]. (6.27)
Substitution of (6.12), (6.20), (6.21), (6.26) and (6.27) leads to the following expression for F7,
R 1
P o 47Ta( +20° +3a+2) — - [To(ao) — To(e/o)]
1—at
+W [(1 + Ko)Tl (OZO’) — (1 — Ko)Tl (OZ/O’)]
A-e) -
oy [(1+ Ko)Tz(ao) — (1 — Ko)Ta(a/o)]. (6.28)

This means that the function F; has now been expressed as a Laurent series, except for the first term.
Thus we may write
F 1 (0’ ) 0

- 1 _k 1 _—k
5= 2wi+Cl+kZﬂAka +;Dka : (6.29)
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where now

K
clz—ﬁ( 5 +20% +3a+2), (6.30)
1 % k
1 Us k
Dk = (? + V3 + ng)OZ , (632)
where
1
1= — .
U (6.33)
2
14+ Ko)(1 — ot
y = LK) —a7) (6.34)
8ma?
(1+ Ko)(1 —a?)?
W, = > , (6.35)
8ra
1
v — L (6.36)
2
1— Kol —a*
8ma?
1— Ko)(1— a?)?
W, = - L= Kol ZaT)” (6.38)
8ma?

This completes the expansion of the first partial solution.

6.2 Melan’s solution

For the second part of the solution the boundary function is given by equation (3.89). Apart from the
integration constant this function is

Fy = ¢(2) + 2¢' (2) + ¢(2), (6.39)
where
P z—1th P z —ih P h
9(2) = 8r(1 —v) & in Elog h + 47(1 —v) z —ih’ (6.40)
, iP 1 1 iP o1 P h
- - ~ 5 - A1
i SW(I—V)[z—z’h P Rl e An(1 =) (z — ih)?’ (6.41)
iP z —1h ih ih
=——(3-4v)1
(=) 8w(l —v) (3 —4v) ng+ih+z—ih+z+ih]
iP ) P(1-2v) h P hz
Com log(z —ih) — dr(l —v) z —ih + 4d7(1 — v) (2 —th)?’ (6.42)

In equation (6.40) a constant term has been added, in order to make the argument of the second logarithm
dimensionless. This term will only add a rigid body translation of the medium, with zero stresses.
The three terms of equation (6.39) will be considered successively.

29



6.2.1 Melan : first term

The first term of the boundary function for Melan’s solution is, from eq. 6.40,
£ i 10gz—ih_i10gz—ih+ 1 h
P 8r(l-v) z+ih 27w h dr(l —v) z —ih
The conformal mapping is, from (6.4),

1—a?214¢

P
It follows that

z =

2ih CI—QQ/C
14 a? 1-¢ 7’
B 2ih 1 —a%C
1402 1-C¢°

z+1h=

z—ih 1 1—0a2C
z+ih ¢ 1—a2/¢

On the cavity boundary ¢ = ao. This gives
z—ih 1 1-— alo

z+ih  ac l—ajo

Taking the logarithm gives

—ih
log SEmL. loga + log(1 — a®0) —log(1 — a/a).
z+ih
Using (6.11) this can be written as
z —tih )
log i —loga — i + Ty(aPo) — To(a/ o).
The second term of equation (6.43) is of the form
—ih —2i
log z hl =log T;Q +log(1 — a®o) —log(1 — ao),
or
—ih —2i
log z hl =log T;Q + To(a?0) — To(ao).
The third term of equation (6.43) is of the form
h 1+4+a? 1—ao

z—ih:Z 2 l1—a30

This can also be written as

h 14+a®> 1-a* ad’c
=1 — 1 .
z —ih 2 202 1—adc
or, with (6.19),
h 14a®> 1-at 3
c—ih 2 ' 2a2 Ti(a%o).
Substitution of (6.50), (6.52) and (6.55) into (6.43) gives
Fy 0 i ) i —2
= 14a?—loga) — — log — 2"
P =) Tyt T Tloea) —gnlos gm0
L [B- w)To(a%e) + To(afo)] + ~~Ty(ao) — ——— L= 1 (430
8r(1 —v) 0 0 2" 8r(l—v) a2 ! '

This completes the expansion of the first term of the boundary function for Melan’s solution.
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(6.49)
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(6.51)

(6.52)

(6.53)

(6.54)

(6.55)
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6.2.2 Melan : second term

The second term of the boundary function for Melan’s solution is, from eq. 6.41,

F§ 2z he'(z)

P h P
where

z 1-a?214¢

e 1ta2l-(

and
he'(z) i h h i h 1 h?
P 8r(1—-v)'z—ih z+ih 2mz—ih 4r(l—v) (2 —ih)?’

On the cavity boundary we have

z 1—-a?1+4ac

h__ll—i-oz2 1—ao’

Furthermore
th 1+ a? 1—ao
z—ih 2 1—a30’
th 1+ a2 1 1—ao
z+ih 2 acl-—alo’
R (1+a?)? (1—-a0)?
(z —ih)2 4 (1—ad0)?’

Substitution of these formulas into (6.59) gives

P 167(1—v)

he'(z) 1+ a? [l—aa 1 1—ao
l1—-adc aol-ajo
1+a? 1—ao 1+a?)? (1-ao0)?

I 1-abo 16m(1 —v) (1 —ad0)?’

The complex conjugate of this expression is, with @ = 1/0,

he'(z) 1+ a? [l—a/a ocl—ajo

P 167(1—v)

1—-a®/c a l—ac
1+a? 1—-ajo (1+a?)? (1-a/o)?
At 1—-a3/oc  16n(1—v) (1 —a3/0)?

This function must be multiplied by z/h, as given by (6.60). This gives

F}  i(1—a?) 1+aa[1—a/a ocl—ajo
P 16r(l-v)l—acll—a3/c a 1-ac

—(1+a2) (1—a/a)2 i(l—OZQ) l+ac 1—a/o

The products can be brought into standard form by factorization,

l+ac 1—afoc  1-a? 2 ao 1+at ad/o
l—-acl—a3/c 1+a2 14+a2l—-ac a2(14+a2)1—-a3/c’

l+ac o l—ao 1+a? ao 1—a? ao

e =1 5 +2

l—aca 1—aco a? 1l-ao a? (1—-a0)?’

31
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(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)



1+aoc (1—a/o)? 71—4a2+4a4—a8+ 2 ao
l—ao (1—a3/0)? (1 —a*)? (1+a?)21—-ac
1+2a2+2a5+a® a3/o (1—a?)(1+a?) ad/o

a*(1+a?)? 1—a3/o a*(1+a2) (1-—a3/0)?

This gives
F_22 il —a?)
P 167(1—v)

1+a?2 ao 1—a? ao
2

[(1 +a?) +

-2
a2 l1l—ao a? (1-ao)?

1+ab% a3/o (1—a?)(1+a) ad/o }

ot 1-a3/o a* (1—-a3/0)?
_i(l—aQ) [(1—042)—1-2 ao _1+a4 ad/o }
4 (1 + a?) 1—ao a2 1-a3/o
In terms of the standard series functions this can also be written as
FZ i(1 —a?) o, 1+a? 1—a?
= =" 7 (1 T -2 T
P 167(1—v) [( +a’)+ — 7 Tilao) oz L2(a0)
1+ab 1—a®)(1+a*
+— Ti(a® /o) — (;#Tg(ag/a)]
i(1 —a?) 9 1+at 3
ST T 9T} (a0) — T }
Tr s a7 |17 o)+ 2Tie0) 1(a%/0)

This completes the expansion of the second term of the boundary function for Melan’s solution.

6.2.3 Melan : third term

The third term of the boundary function for Melan’s solution is, from eq. 6.42,

D)
P P’
where
U(2) 1 ) z —ih h h
P 8r(1 —v) [i(3 — 4v) I ) z—i—ih]
z—ih (1-2v) h 1 hz

7
——1 .
o 2T h dr(l —v) z —ih + dr(l —v) (z — ih)?

The various terms can be expressed as follows.

z —ih ) 3
log ~h —i0 —loga + log(1l — a’c) —log(1 — a/0),
h 1+4+a? 1—ao

z—ih:Z 2 1—a30’

h 1+a*> 1 1—ao
Z+ih | 2 ac 1l—a/o’

—ih —2i
log z hl =log T;Q +log(1 — a®o) —log(1 — ao),
hz 7,1—044 1 —a?0?
(z—dh2 " 4 (1—ado)?
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This gives

P(z) 3 —4dv
P 8r(l1-v)

[0 —iloga +ilog(l — a’o) —ilog(l — a/0)]

1+ a? [,l—aa 7 l—aa]

167(1 —v) T-a%  ao l—a/o
. o
—i [log T;Q +log(1 — a’c) —log(1 — ao)]

i(1-2v)(1+a?) 1-ao i(l1—a%*) 1-a20?

. 6.80
8r(1—v) 1—adc  167(1 —v) (1 —ad0)? (6.80)
Taking the complex conjugate gives, with 7 =1/0,
F3 —14
?2 = % [0+ iloga — ilog(1l — a® /o) +ilog(l — ao)]
N 1+ a? [ l—a/o +i_a l—a/a]
6r(l—v)*1—a?/c a 1l—ac
. 9;
+§ [log 1—1-—242 +1log(1 — o® /o) — log(1 — a/0)]

i(1—-2v)(1+a?) 1-a/o i(l—a*) 1-a?/c? (6.81)

8r(1—v) 1—a3/c  16n(1—v) (1 —a3/0)?

The various terms in this expression can be written in terms of the functions Ty(¢), 71(¢) and T2(¢), in
the following way.

log(1 — a’/0) = Ty(a?/a), (6.82)
log(1 — ao) = Ty(ao), (6.83)
log(1 — a/o) = To(a/o), (6.84)
1—a/o 1-a? a3/o 1—a? 3
oo 177w 1Tt T a2 Ti(a”/o), (6.85)
1— 1—a? 1—a?
g ajo =14+ > Q9 + a T (ao), (6.86)
a l—ac a2 1—ao
1—a?/o? 71+1+a4 ad/o 1—at ad/o
(1—-a3/0)2 a* 1—-a3/o a* (1-a3/0)?
1 4 1— 4
1+ 8 N0 0) - — LT (0¥ o). (6.87)

Substitution of all these results into (6.81) gives

1 —av i(1—2v o? i(1 — ot
% - % [0+ itoga — 1T(e?/o) + iTy ()] + - 8:(1)(—1:; - 16(71r(1 = V))
i1 —a i i
N 167521 — V))QQ [T1(a® /o) = Ti(a0)] + Y. [log ﬁ + To(a? /o) — To(a/o)]
(1 —2v —at (1 — o i(1 = a?)?
_ (187T(21 1(11/)02 )Tl(a?’/a) - Wﬂ(oﬁ/g) + WTQ(O‘?)/U)' (6.88)

This completes the expansion of the third term of the boundary function for Melan’s solution.
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6.3 Melan : addition of the three terms

The first term is, from (6.56),

Fy 0 i 9 i —24
2 = 1 —1 - —log——
P =) Tyt T Tloea) —gnlos g0
(3 4)Ty(a%) + To(a/o)) + 2To(a0) — =2 7y (o)
— (3 = — — a’o
8r(1 —v) i Ehd o 007 sr(1—v) o2 '
The second term is, from (6.72),
F3  i(1—a?) o, 1+a? 1—a?
?— m[(l—i—a )+ B} Tl(O[O')—2 TQ(O[O')
1+ab 1—a®)(1+a*
7,0 /o)~ L2 g 40
i(1 —a?) 9 1+at 3
e [(1_a)+2T1(aa)_ 2 Ti(a /a)]

The third term is, from (6.88),

F3 3—4v , , , i(l—2v)(1+a?) i(1—a?)

= 78#(1 —) [9 +iloga —iTy(a® /o) + zTO(aU)] + 71— 1) — 1671 — 1)
i(l1 —a* i i

—m [Tl(a?’/a) — Tl(aa)] + %[bgﬁ +To(a®/o) — To(a/a)]

i(1—2v)(1 —a?) i(1— ad) i(1 — aty?
- 8n(l-v)a? Tie’/o) - mTl(ag/U) + mTQ(a?’/a).

The sum of these three terms can be written as
— = —i—QlTo(OéO’)— To(a’o) — QsTh(e/o) — QuTp(e® /o)
+R1T1( ) + R2T1 (0130') + Rng( / ) + R4T1 (013/0')
=+ SlTQ(aU) =+ SQTQ(Ozgg) —+ SgTQ( / ) —+ S4T2(O[3/0'),

(6.89)

(6.90)

(6.91)

(6.92)

where the constant term has been omitted (as this is accounted for by the arbitrary integration constant

(), and where

7 —8v
@ = S 8r(1—v)’
3—4v
@ = 8r(l—v)’
5 —4v
s = 8r(l —v)’
1
@i = S 8r(1—v)’
1—at 1—a?
Ry = - ’
8r(l —v)a?  27(1+ a?)
1—at
f2 = (1 —v)a?’
R3 =0,
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Ry T )’ (6.100)
(1 —a?)?
S, = “Er(—0)a? (6.101)
Sy =0, (6.102)
S3 =0, (6.103)
(1—a??
S4 - m (6.104)

It may be noted that the first term of equation (6.92) cancels the first term of equation (6.28), as expected.
The function F5, has now also been expressed as a Laurent series, and we may write,

F2(U) 0 S 2 _k S 2 _—k
= _—+C. A D . 6.105
P om t 2+kZ:1 kT +kZ:1 kT (6.105)

The coefficients in these series are

A2 = (%+R1+k31)ak+ (% + Ry + kSs)a®", (6.106)
2 QB k Q4 3k
Dy = (7 + R3 + kS3)a” + (7 + Ry + kSy)a®". (6.107)

Both parts of the boundary function have now been expanded into Laurent series.

6.4 Comparison with numerical integration

The analytical calculation of the coefficients of the Laurent series expansion can be compared with the
numerical calculation using Filon’s integration method, as presented above. The values are compared
in table 6.4, for the case r/h = 0.8, v = 0.0, Ky = 0.5. The numerical values were calculated using a
subdivision of the integration interval into 200 parts. It appears that the agreement between the two
methods is good, especially for the series of ascending powers. This is even better when a larger number of
intervals is being used. The analytical solution is more accurate, and much faster, however, and therefore
deserves preference.
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Ak Dy,

k numerical analytical numerical analytical

1] -0.097731082 | -0.097731082 | 0.045502752 | 0.045508367
2| -0.075443172 | -0.075443173 | 0.035046522 | 0.035063823
3 | -0.046289372 | -0.046289376 | 0.024114552 | 0.024141349
4 | -0.026641738 | -0.026641745 | 0.015140013 | 0.015169941
5 | -0.014916942 | -0.014916951 | 0.009038362 | 0.009066302
6 | -0.008221465 | -0.008221476 | 0.005233558 | 0.005256878
7 | -0.004482820 | -0.004482831 | 0.002968103 | 0.002986125
8 | -0.002424608 | -0.002424618 | 0.001657615 | 0.001670779
9 | -0.001302968 | -0.001302976 | 0.000914701 | 0.000923909
10 | -0.000696490 | -0.000696497 | 0.000499878 | 0.000506101
11 | -0.000370630 | -0.000370635 | 0.000270994 | 0.000275084
12 | -0.000196462 | -0.000196467 | 0.000145917 | 0.000148544
13 | -0.000103788 | -0.000103791 | 0.000078113 | 0.000079767
14 | -0.000054665 | -0.000054668 | 0.000041605 | 0.000042629
15 | -0.000028716 | -0.000028717 | 0.000022061 | 0.000022686
16 | -0.000015048 | -0.000015049 | 0.000011652 | 0.000012029
17 | -0.000007869 | -0.000007869 | 0.000006132 | 0.000006357
18 | -0.000004107 | -0.000004107 | 0.000003217 | 0.000003350
19 | -0.000002139 | -0.000002140 | 0.000001683 | 0.000001760
20 | -0.000001113 | -0.000001113 | 0.000000878 | 0.000000923

Table 6.1. Comparison of calculation methods
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7. Validation of the solution

The complete solution of the problem consists of the sum of the three partial solutions. In order to
verify the consistency and the accuracy of the solution a computer program has been developed, named
MINDLIN. This program enables to obtain numerical results of stresses and displacements in each point
of the field, to construct graphical representations in the form of contours of various quantities, and to
validate the solution.

The validation consists of the calculation of the integrated surface tractions along the cavity boundary,
the surface tractions themselves along the cavity boundary, and the radial normal stress and shear stress
along the cavity boundary. All these quantities should be zero. Another validation is the vertical normal
stress and the shear stress along the horizontal upper boundary. These quantities should also be zero.
It appears that all these conditions are very well satisfied, with errors usually smaller than 0.000001,
provided that the number of terms in the Laurent series approximations of the stress functions is taken
sufficiently large. The computer program itself calculates a suggestion for the number of terms of the
Laurent series to be taken into account. This suggestion is based upon the requirement that the two
stress functions, and their derivatives, should converge in the circular ring in the {-plane. Following this
suggestion usually gives satisfactory results. For very large cavities this may mean that a large number
of terms is to be taken into account. For r/h = 0.99 the number of terms needed for the series is about
200, and for r/h = 0.999 the number of terms needed is about 500. For smaller cavities convergence is
much faster. If r/h = 0.5, which is still a rather large cavity, only about 30 terms are needed to obtain
sufficient accuracy.

Mindlin : Circular cavity in elastic half plane with uniform gravity.
Complex variable solution by A. Verruijt and J.R. Booker, Sydney 1996.
Ky=1,v=0.5,r/h=0.38.

Figure 7.1. Contours of oy,, vertical normal stress. Contour interval = 0.2 wh.

The calculation of the displacements in the program is based upon the addition of the second and
third partial solutions only, which together represent the total effect of the excavation. Because the
second solution contains a logarithmic singularity the displacements at infinity are infinitely large. In the
program MINDLIN it is assumed that at a certain given point, defined by the coordinates x = 0,y = —D,
the displacements are zero. This condition ensures that all displacements in the vicinity of the cavity
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are finite. It should be remembered that the actual magnitude of the displacements has little physical
meaning. Only the displacement differences are meaningful.

As an example some of the results are shown in graphical form. They apply to the case r/h = 0.8,
v = 0.5 and Ko = 1. Figure 7.1 shows contours of the stresses oy,. It can be observed that the stresses
far from the cavity are practically in agreement with the gravity field, that the stress oy, is zero along
the upper boundary, and that it is zero at the top and the bottom of the cavity. The program allows to
verify these conditions numerically. All boundary conditions are satisfied with great accuracy.

|

T

L1

Mindlin : Circular cavity in elastic half plane with uniform gravity.
Complex variable solution by A. Verruijt and J.R. Booker, Sydney 1996.
Ky=1,v=0.5,r/h=0.38.

Figure 7.2. Deformations of rectangular mesh. Multiplication factor = 0.5.

Figure 7.2 shows a mesh of squares in the field and its deformations after creation of the cavity. It
appears that the size of the cavity is considerably reduced by the release of the stresses. It may be
interesting to observe that for very small values of the lateral earth pressure coefficient (e.g. Ky = 0) the
shape of the cavity transforms into an ellipse, because of the vertical stress release only.
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8. Comparison with Mindlin’s results

In 1940 Mindlin published a great number of numerical data, based upon his solution of the problem,
using bipolar coordinates. These data can now be verified using the solution obtained in this report.
The data will be presented in this chapter in the same format as in Mindlin’s paper (Mindlin, 1940).
The parameters used by Mindlin for the points on the cavity boundary are oy and 3, where 3 can be
identified with 6 in the complex variable solution, at least along the cavity boundary, and where «; is
defined by

h
coshay = —, (8.1)
T

where, as before, h is the depth of the center of the cavity and r is its radius. It can be shown that the
relation between the parameter « used in the complex variable solution and Mindlin’s o is

a = exp(—a1). (8.2)
a1 r/h
0.2 | 0.980328
0.4 | 0.925007
0.6 | 0.843551
0.8 | 0.747700
1.0 | 0.648054
1.2 | 0.552286
1.4 | 0.464922
1.6 | 0.387978
1.8 | 0.321805
2.0 | 0.265802

Table 8.1. Relation between oy and r/h

Thus the parameters of the two solutions can easily be expressed into each other, see also table 8.

Mindlin has given extensive tables of the tangential stress along the cavity boundary, for various
values of a; and 3, and for several values of v and Kj. These stresses are expressed as oy /vD, where
D is the diameter of the cavity, i.e. D = 2r. The program MINDLIN has an option to calculate the
same quantity, and this enables to verify the two solutions. The results of the complex variable analysis
are shown in tables 8.2 and 8.3. Comparison with the tables given by Mindlin, which are reproduced
in tables 8.4 and 8.5, shows that most of the data are in perfect agreement. Some values are slightly
different (by a few %), and a few values differ somewhat more. It is believed that the complex variable
solution, which is performed by computer, is the more accurate. It has to be said that it is remarkable
that Mindlin did obtain such accurate results without the help of artificial computing power.
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p

ar [0 [ 20 [ 40 [ 60 [ 80 | 100 [ 120 | 140 | 160 | 180
v=0, Ko =1
0.2 |-1.63 | -0.66 | -0.50 | -0.46 | -0.51 | -0.65 | -0.86 | -1.09 | -1.27 | -1.34
0.4|-1.69 | -1.07 | -0.77 | -0.71 | -0.69 | -0.65 | -0.57 | -0.49 | -0.43 | -0.40
0.6 | -1.80 | -1.42 | -1.06 | -0.93 | -0.86 | -0.76 | -0.62 | -0.46 | -0.34 | -0.29
0.8|-1.96 | -1.72 | -1.37 | -1.19 | -1.07 | -0.93 | -0.76 | -0.59 | -0.45 | -0.40
1.0]-218 |-2.01 |-1.71|-149 | -1.33 | -1.17 | -0.98 | -0.80 | -0.66 | -0.61
1.2]-2.46 | -2.33 | -2.07 | -1.84 | -1.65 | -1.46 | -1.27 | -1.09 | -0.95 | -0.90
14]-281|-271|-249 | -2.25 | -2.03 | -1.83 | -1.63 | -1.44 | -1.31 | -1.26
1.6 | -3.25 | -3.17 | -2.97 | -2.73 | -2.50 | -2.28 | -2.07 | -1.89 | -1.76 | -1.71
1.81-3.79 | -3.72 | -3.54 | -3.31 | -3.07 | -2.84 | -2.62 | -2.44 | -2.31 | -2.27
2.0 | -4.45|-439 | -4.22 | -4.00 | -3.75 | -3.51 | -3.29 | -3.11 | -2.98 | -2.94
V:%,Kozl
0.21-1.63 | -0.63 | -0.42 | -0.35 | -0.45 | -0.74 | -1.18 | -1.66 | -2.03 | -2.17
0.4|-1.67 | -1.05 | -0.73 | -0.66 | -0.66 | -0.69 | -0.74 | -0.78 | -0.81 | -0.85
0.6 | -1.77 | -1.39 | -1.02 | -0.89 | -0.84 | -0.79 | -0.73 | -0.66 | -0.60 | -0.58
0.8|-1.93 |-1.68 | -1.33 | -1.15 | -1.05 | -0.96 | -0.85 | -0.74 | -0.65 | -0.62
1.0]-214 | -1.97 | -1.67 | -1.45 | -1.31 | -1.19 | -1.06 | -0.93 | -0.83 | -0.79
1.2 -241|-229|-2.03 | -1.80 | -1.63 | -1.48 | -1.33 | -1.19 | -1.09 | -1.05
1.4 -2.76 | -2.66 | -2.44 | -2.21 | -2.02 | -1.85 | -1.69 | -1.54 | -1.44 | -1.40
1.6 | -3.19 | -3.11 | -2.92 | -2.69 | -2.49 | -2.30 | -2.13 | -1.98 | -1.88 | -1.84
1.8 -3.73 | -3.66 | -3.49 | -3.27 | -3.05 | -2.85 | -2.67 | -2.52 | -2.42 | -2.38
20| -439 | -433 | -417 | -3.96 | -3.74 | -3.53 | -3.34 | -3.19 | -3.08 | -3.05
V:%,Kozl
0.2 |-1.61 | -0.57 | -0.26 | -0.14 | -0.33 | -0.91 | -1.81 | -2.79 | -3.56 | -3.85
0.4|-1.64 |-0.99 | -0.63 | -0.54 | -0.59 | -0.78 | -1.06 | -1.35 | -1.58 | -1.67
0.6 |-1.72|-1.33 | -0.93 | -0.80 | -0.79 | -0.85 | -0.95 | -1.05 | -1.12 | -1.15
0.8 -186|-1.61|-1.25|-1.07 | -1.01 | -1.01 | -1.02 | -1.04 | -1.05 | -1.06
1.0 -2.06 | -1.89 | -1.58 | -1.37 | -1.28 | -1.23 | -1.20 | -1.18 | -1.16 | -1.15
1.2]-232|-220|-194 | -1.73 | -1.60 | -1.52 | -1.46 | -1.41 | -1.38 | -1.36
1.4]-2.66 | -2.56 | -2.35 | -2.14 | -1.99 | -1.88 | -1.80 | -1.74 | -1.69 | -1.68
1.6 | -3.08 | -3.00 | -2.82 | -2.62 | -2.46 | -2.33 | -2.24 | -2.16 | -2.11 | -2.09
1.8 | -3.61 | -3.55 | -3.39 | -3.20 | -3.02 | -2.88 | -2.77 | -2.69 | -2.63 | -2.61
2.0 | -4.26 | -4.21 | -4.06 | -3.88 | -3.71 | -3.56 | -3.44 | -3.35 | -3.29 | -3.27

Table 8.2. Tangential stress, o /vD
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p

oy [0 ] 20 | 40 [ 60 | 80 | 100 | 120 | 140 [ 160 | 180
V= O, KO =0
0.2]122|-087]-099|-1.12 | -0.87 | -0.10 | 1.11 | 2.44 | 3.48 | 3.87
04]122|-162|-1.11|-1.10 | -0.88 | -0.31 | 0.55 | 1.50 | 2.24 | 2.52
0.6 | 1.25|-1.60 | -1.61 | -1.27 | -1.00 | -0.47 | 0.31 | 1.14 | 1.79 | 2.03
08129 |-119|-2.17 | -1.67 | -1.20 | -0.63 | 0.13 | 0.93 | 1.54 | 1.77
1.0 | 1.37 | -0.80 | -2.54 | -2.25 | -1.56 | -0.84 | -0.03 | 0.79 | 1.40 | 1.62
1.2 | 147 | -0.48 | -2.74 | -2.89 | -2.09 | -1.15 | -0.20 | 0.67 | 1.31 | 1.55
1.4 | 1.60 | -0.22 | -2.86 | -3.53 | -2.78 | -1.60 | -0.43 | 0.58 | 1.29 | 1.54
1.6 { 1.79 | 0.01 | -2.96 | -4.19 | -3.59 | -2.22 | -0.76 | 0.48 | 1.31 | 1.60
1.8 12.02| 0.23 | -3.08 | -4.88 | -4.55 | -3.01 | -1.20 | 0.36 | 1.39 | 1.75
2.0]232| 046 |-3.24 | -5.65 | -5.65 | -4.00 | -1.79 | 0.19 | 1.52 | 1.98
vV = %, Ko = %

021028 |-077|-075|-079 |-0.69 | -0.37 | 0.13 | 0.69 | 1.13 | 1.30
04]027|-141]-095|-0911-0.79 | -0.47 | 0.02 | 0.55 | 0.97 | 1.12
0.6 026 |-151]-139|-1.11 | -0.93 | -0.59 | -0.11 | 0.41 | 0.82 | 0.97
08024 |-133|-1.87|-147 | -1.14 | -0.75 | -0.25 | 0.27 | 0.68 | 0.83
1.0 { 0.22 | -1.16 | -2.22 | -1.96 | -1.46 | -0.97 | -0.42 | 0.13 | 0.54 | 0.70
1.2 1 0.20 | -1.05 | -2.47 | -2.50 | -1.93 | -1.27 | -0.62 | -0.02 | 0.42 | 0.58
1.4 | 0.18 | -1.00 | -2.69 | -3.07 | -2.51 | -1.70 | -0.89 | -0.19 | 0.29 | 0.47
1.6 | 0.16 | -0.99 | -2.91 | -3.67 | -3.22 | -2.26 | -1.25 | -0.40 | 0.17 | 0.37
1.8 1 0.15 | -1.03 | -3.18 | -4.32 | -4.04 | -2.97 | -1.73 | -0.66 | 0.05 | 0.29
2.0 013 |-1.10 | -3.51 | -5.06 | -5.01 | -3.85 | -2.34 | -0.99 | -0.08 | 0.23
V= %, Ko =0
02]123|-084)-091|-1.01|-0.811-0.19 | 0.79 | 1.87 | 2.71 | 3.03
04]124|-159|-1.06 | -1.04 | -0.85 | -0.36 | 0.39 | 1.22 | 1.85 | 2.09
0.6 | 1.27 | -1.57 | -1.57 | -1.22 | -0.98 | -0.50 | 0.20 | 0.95 | 1.52 | 1.74
0.8]132|-1.16 | -2.13 | -1.63 | -1.18 | -0.65 | 0.05 | 0.78 | 1.34 | 1.55
1.0 | 1.40 | -0.76 | -2.50 | -2.21 | -1.54 | -0.86 | -0.10 | 0.66 | 1.25 | 1.44
1.2 | 1.51 | -0.43 | -2.69 | -2.85 | -2.08 | -1.17 | -0.26 | 0.57 | 1.17 | 1.39
1.4 | 1.65|-0.17 | -2.81 | -3.50 | -2.76 | -1.62 | -0.49 | 0.48 | 1.16 | 1.40
1.6 | 1.84 | 0.06 | -2.91 | -4.15 | -3.58 | -2.23 | -0.81 | 0.39 | 1.19 | 1.48
1.8 1208 | 0.29 | -3.03 | -4.84 | -4.53 | -3.03 | -1.25 | 0.27 | 1.28 | 1.63
201239 052]-3.19|-5.61|-5.64|-4.01 | -1.84 | 0.11 | 1.42 | 1.87
V= %, Ko =0
02124 -077|-075|-0.80|-0.69 |-036| 0.16 | 0.74 | 1.19 | 1.36
04 ] 127 |-154]-096|-092|-0.79 | -0.45 | 0.07 | 0.64 | 1.08 | 1.25
06132 |-151]-149|-1.13 | -0.93 | -0.56 | -0.02 | 0.56 | 1.00 | 1.17
0.8 139 |-1.09|-2.05|-1.55|-1.14 | -0.70 | -0.13 | 0.48 | 0.94 | 1.11
1.0 | 1.48 | -0.68 | -2.41 | -2.14 | -1.51 | -0.90 | -0.24 | 0.41 | 0.90 | 1.08
1.2 | 1.61 | -0.34 | -2.60 | -2.78 | -2.04 | -1.20 | -0.39 | 0.35 | 0.89 | 1.08
1.4 | 1.76 | -0.07 | -2.72 | -3.43 | -2.73 | -1.65 | -0.60 | 0.29 | 0.90 | 1.13
1.6 { 1.95| 0.17 | -2.81 | -4.08 | -3.55 | -2.27 | -0.92 | 0.21 | 0.96 | 1.23
1.8 1220 | 040 | -2.93 | -4.77 | -4.50 | -3.06 | -1.35 | 0.10 | 1.06 | 1.40
2.0] 251 | 0.64|-3.08|-5.53 | -5.61 | -4.05 | -1.94 | -0.05 | 1.21 | 1.65

Table 8.3. Tangential stress, oy /vD
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p

ar [0 [ 20 [ 40 [ 60 [ 80 | 100 [ 120 | 140 | 160 | 180
v=0, Ko =1
0.2 |-1.63 ... | -1.35
0.4|-1.69 | -1.07 | -0.77 | -0.71 | -0.69 | -0.65 | -0.57 | -0.49 | -0.43 | -0.40
0.6 |-1.80 | -1.42 | -1.13 | -0.93 | -0.86 | -0.76 | -0.62 | -0.46 | -0.34 | -0.29
0.8 |-1.96 | -1.72 | -1.37 | -1.20 | -1.07 | -0.93 | -0.74 | -0.59 | -0.45 | -0.40
1.0]-218 |-2.01 |-1.71|-149 | -1.33 | -1.17 | -0.98 | -0.80 | -0.66 | -0.61
1.2 -2.46 | -2.33 | -2.07 | -1.84 | -1.64 | -1.46 | -1.27 | -1.08 | -0.95 | -0.90
14]-281 |-2.71|-248 | -2.24 | -2.03 | -1.82 | -1.64 | -1.45 | -1.31 | -1.26
1.6 | -3.25 | -3.17 | -2.97 | -2.73 | -2.50 | -2.28 | -2.07 | -1.89 | -1.76 | -1.71
1.81-3.79 | -3.72 | -3.54 | -3.31 | -3.07 | -2.84 | -2.62 | -2.44 | -2.31 | -2.27
2.0 |-445|-442 | -4.22 | -4.00 | -3.75 | -3.51 | -3.29 | -3.11 | -2.98 | -2.94
V= %, Ko =1
0.2 |-1.63 .. -2.18
0.4|-1.67 | -1.05 | -0.73 | -0.66 | -0.66 | -0.69 | -0.74 | -0.78 | -0.81 | -0.85
0.6 | -1.77 | -1.39 | -1.02 | -0.89 | -0.84 | -0.79 | -0.73 | -0.66 | -0.60 | -0.58
0.8|-1.93 |-1.68|-1.33 | -1.16 | -1.05 | -0.96 | -0.83 | -0.74 | -0.65 | -0.62
1.0]-214 | -1.97 | -1.67 | -1.45 | -1.31 | -1.19 | -1.06 | -0.93 | -0.83 | -0.79
1.2]-241|-229 | -2.03 | -1.80 | -1.63 | -1.48 | -1.34 | -1.19 | -1.09 | -1.06
1.4 -2.76 | -2.66 | -2.44 | -2.21 | -2.01 | -1.84 | -1.69 | -1.55 | -1.43 | -1.39
1.6 | -3.19 | -3.11 | -2.92 | -2.69 | -2.49 | -2.30 | -2.13 | -1.98 | -1.88 | -1.84
1.8 -3.73 | -3.66 | -3.49 | -3.27 | -3.04 | -2.85 | -2.67 | -2.52 | -2.42 | -2.38
2.0 | -4.39 | -4.36 | -4.17 | -3.96 | -3.74 | -3.53 | -3.34 | -3.19 | -3.08 | -3.05
V= %, Ko =1
0.2 ] -1.61 ... | -3.85
0.4|-1.64 |-0.99 | -0.63 | -0.54 | -0.59 | -0.78 | -1.06 | -1.35 | -1.58 | -1.67
0.6 |-1.73 | -1.33 | -0.93 | -0.80 | -0.79 | -0.85 | -0.95 | -1.05 | -1.12 | -1.15
0.8 |-186|-1.61|-1.25|-1.08 | -1.01 | -1.01 | -1.01 | -1.04 | -1.05 | -1.06
1.0 -2.06 | -1.89 | -1.58 | -1.37 | -1.28 | -1.23 | -1.20 | -1.18 | -1.16 | -1.15
1.2]1-232|-220|-194 | -1.73 | -1.60 | -1.52 | -1.46 | -1.41 | -1.38 | -1.37
1.4]-2.66 | -2.56 | -2.35 | -2.13 | -1.98 | -1.87 | -1.81 | -1.74 | -1.69 | -1.67
1.6 | -3.08 | -3.00 | -2.82 | -2.62 | -2.46 | -2.33 | -2.24 | -2.16 | -2.11 | -2.09
1.8 | -3.61 | -3.55 | -3.39 | -3.20 | -3.02 | -2.88 | -2.77 | -2.69 | -2.63 | -2.61
2.0 | -4.26 | -4.24 | -4.06 | -3.88 | -3.71 | -3.56 | -3.44 | -3.35 | -3.29 | -3.27

Table 8.4. Tangential stress, o¢/vD, Mindlin’s results
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p

oy [0 ] 20 | 40 [ 60 | 80 | 100 | 120 | 140 [ 160 | 180
V= O, KO =0
0.2 1.24 .. | 3.87
0.4]122|-1.62|-1.04 | -1.03 | -1.04 0.73 | 1.89 | 2.16 | 2.05
0.6 | 1.25 | -1.60 | -1.69 | -1.27 | -1.00 031 | 1.14 | 1.79 | 2.03
0.8 129 |-243 |-2.18 | -1.68 | -1.20 0.15| 0.93 | 1.54 | 1.77
1.0 | 1.36 | -0.81 | -2.53 | -2.23 | -1.47 0.05| 0.77 | 1.41 | 1.66
1.2 147 | -048 | -2.74 | -2.89 | -2.09 -0.20 | 0.68 | 1.31 | 1.55
14] 161 |-0.22 | -2.86 | -3.53 | -2.53 -0.44 | 0.58 | 1.29 | 1.55
1.6 | 1.79 | 0.01 | -2.96 | -4.19 | -3.59 -0.75 | 0.48 | 1.31 ] 1.60
1.8 12.04 | 0.24 | -3.09 | -4.89 | -4.55 -1.19 | 038 | 1.38 | 1.74
201233 | 043 |-3.24 | -5.65 | -5.65 -1.79 | 0.19 | 1.52 | 1.98
v %, Ko
0.2 ]0.29 ... | 129
0.4]0.26|-1.41|-0.90 | -0.87 | -0.89 0.14| 0.81 | 091 ] 0.79
0.6 026 |-1.51|-1.39 | -1.11 | -0.93 -0.11 | 0.41 | 0.82 ] 0.97
0.8 1024 |-215|-1.87 | -1.48 | -1.14 -0.23 | 0.27 | 0.68 | 0.83
1.0 0.22 | -1.17 | -2.22 | -1.95 | -1.41 -0.44 | 0.12 ] 0.56 | 0.72
1.2 0.21 | -1.05 | -2.47 | -2.50 | -1.93 -0.62 | -0.02 | 0.42 | 0.58
1.410.19 | -1.00 | -2.69 | -3.07 | -2.35 -0.89 | -0.20 | 0.30 | 0.48
1.6 | 0.17 | -0.99 | -2.92 | -3.67 | -3.22 -1.25 | -0.40 | 0.17 | 0.37
1.8 1 0.15 | -1.02 | -3.19 | -4.33 | -4.03 -1.73 | -0.64 | 0.04 | 0.29
2.0 0.13 | -1.12 | -3.51 | -5.06 | -5.00 -2.34 | -0.99 | -0.08 | 0.23
V= %, Ko
0.2 | 1.25 ... | 3.03
0.4 1.22|-1.60 | -0.99 | -0.97 | -1.00 0.57 | 1.61 | 1.78 | 1.61
0.6 | 1.27 | -1.57 | -1.57 | -1.22 | -0.97 0.20 | 0.95| 1.52 | 1.74
08133 |-239 |-2.14 | -1.64 | -1.18 0.07| 0.78 | 1.34 | 1.55
1.0 | 1.40 | -0.77 | -2.49 | -2.20 | -1.45 -0.13 | 0.64 | 1.25| 1.48
1.2 1.52 | -0.44 | -2.70 | -2.85 | -2.08 -0.27 | 0.57 | 1.17 | 1.40
1.4 ] 1.66 | -0.17 | -2.81 | -3.49 | -2.52 -0.50 | 0.48 | 1.16 | 1.41
1.6 | 1.85 | 0.07 | -2.91 | -4.15 | -3.58 -0.81 | 0.39 | 1.19 | 1.48
1.8 12,10 | 0.29 | -3.04 | -4.85 | -4.53 -1.24 | 0.30 | 1.27 | 1.62
201239 | 049 |-3.19 | -5.61 | -5.64 -1.84 | 0.11 | 1.42 | 1.87
V= %, Ko
0.2 | 1.27 ... | 1.36
0.4 135 |-1.54|-0.90 | -0.86 | -0.94 0.25 | 1.03 | 1.01 | 0.78
0.6 | 132 |-1.51|-1.49 | -1.13 | -0.93 -0.02 | 0.56 | 1.00 | 1.17
0.8 139 |-232|-2.05|-1.56 | -1.14 -0.11 | 0.48 | 0.94 | 1.11
1.0 | 1.48 | -0.69 | -2.41 | -2.12 | -1.42 -0.27 | 0.39| 0.92 | 1.12
1.2 ] 1.61 | -0.35 | -2.61 | -2.78 | -2.04 -0.39 | 0.35 | 0.89 | 1.09
1.4 ] 1.76 | -0.07 | -2.72 | -3.42 | -2.49 -0.61 | 0.28 1 0.90 | 1.13
1.6 | 1.96 | 0.18 | -2.82 | -4.08 | -3.55 -0.92 | 0.21 ] 0.96 | 1.23
1.8 1222 041 |-2.94 | -4.78 | -4.51 -1.34 | 0.13 | 1.06 | 1.39
2.0 252 | 0.61 |-3.08|-5.54 | -5.61 -1.94 | -0.05 | 1.21 | 1.65
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9. Cylindrical cavity in infinite elastic medium

In this chapter the solution for the creation of a cylindrical cavity in an elastic material of uniform unit
weight and of infinite extent is presented. This solution can be considered as a first approximation of the
solution of Mindlin’s problem, which may be valid if the location of the cavity is very deep, below the
stress free boundary of the half plane. The characteristic parameters of the solution are the coefficient
of initial lateral stress Ky and Poisson’s ratio v. It should be noted that the notations in this chapter
are slightly different from those in earlier chapters. The vertical coordinate, for instance, is denoted by
z rather than y.

9.1 Gravity stresses

The stresses in a homogeneous material of infinite extent (without any cavity), with uniform gravity in
positive z-direction, are supposed to be

Oz = —Koy(z + h), (9.1)
oyy = —Koy(z + h), (9.2)
0. = —v(z + h), (9.3)

v

z

Figure 9.1. Circular cavity in infinite medium

where  is the unit weight of the material, Ky is a given coefficient (the coefficient of initial lateral stress),
and h is the depth of the origin (the center of the cavity to be excavated later) below the surface at which
the stresses are supposed to be zero (the free surface). It is assumed that the radius of the cavity a is
very small compared to the depth h. It should be noted that the sign convention is that tensile stresses
are condidered as positive. The state of stress defined by egs. (9.1) — (9.3) is considered as a given initial
state of stress. In this initial state the shear stresses oy, 0y, and o, are all equal to zero.

It will be convenient to express the stresses in polar coordinates, using the standard transformation
formulas. This gives

orr = —Y(z+ h) [Koazr#], (9.4)
7 = =z + )[R0, (9.5)
o9 = (2 + h) [%]. (9.6)

r
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9.2 Cylindrical cavity

9.2.1 Upward force

For the case of the creation of a cylindrical cavity (the excavation of a tunnel) the state of stress and
strain is modified by the application of an upward force, of magnitude yma?, where a is the radius of the
cavity. The elastic solution of the basic problem of a force at a point of an infinite plane is (Sneddon,
1951; Timoshenko & Goodier, 1951)

Ous = 4(1%;2 [27%2 ~(1-2), (9.7)

0ss = 4”% 22 -], 9-8)
A=)ty

oue = T2 o)), (9.9)

r2

4(1 —v)r?

In this solution the presence of an eventual cavity is ignored.
In polar coordinates the stresses are, using the transformation formulas for stresses,

3—2v a?

rr — T N o 9.10
? 7E 4(1—v)r? (9.10)

B 1—2v a? (9.11)
ou =T 41 —v) r?’ '

1—2v a?

o = —YL —————— —. 12
oo b 41 —v)r? (9:12)

It can be shown that the resultant force of this system on a circle around the origin is indeed a force
yma? in upward direction.

9.2.2 Gravity and an upward force

The two states of stress can be added to give the combined effect of gravity and the upward force,

Koz? + 22 3—2v a?
= — h) | ——— —_— 9.13
o Yz + 0 [ ]+vz4(1_y>r2 (9.13)
x2 + Koz2 1—2v a2
o =—y(z + h)[ r2 ] -z 11— v) 2 (9.14)
(1-Kp)zxz 1—-2v a?
o = h|————| 7 ———— 1
Oro FY(Z + )[ 72 ] yr 4(1 — I/) 2 (9 5)
These can also be written in polar coordinates as
3-2v a? .
Opr = —"yh,—"ﬂ"[l - mﬁ] COS@—F")/I’L(I —Ko) 511129 (916)
+77(1 — Ko) sin”  cos 6, (9.17)
= —vh [1+ﬂa—2]co 0 +vh(1 — Kg) cos? 0 +yr(1 — Kg) cos® 0 (9.18)
O = —7 yr =) 12 S 0 0) cos yr 0) cos” 6, .
1—-2v a2, | . .
org = =1 | ——— =] sinf 4+ yh(1 — Kq) sin cos § + yr(1 — Ko) sin§ cos 6. (9.19)
4(1—v)r?
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It may be more convenient to formulate these expressions in the form of Fourier series. This can be done
by noting that

sinf cos 0 = 3 sin 26, (9.20)
sin® 6 = 1(1 — cos 26), (9.21)
cos® 0 = 1(1 4 cos 26), (9.22)
sin® 0 cos§ = 2 (cos 0 — cos 30), (9.23)
sin @ cos® § = 1 (sin 3¢ + sin 6). (9.24)
cos® 0 = 1(cos 30 + 3 cos ). (9.25)

Using these relations egs. (9.17) — (9.19) can be written as

3 —2v a?
orr = —37h(1 4+ Ko) — 397 [3 4+ Ko — T 5?—2] cos — 3yh(1 — Ko) cos 26 (9.26)
—1yr(1 — Ko) cos 30, (9.27)
1 1 1—2v CL2 1
o = —2vh(1 + Ko) — 2yr[1 + 3Ky + T, T—2] cos 0 + 5vh(1 — Kg) cos 20 (9.28)
+297(1 = Ko) cos 36, (9.29)
1 1—2va?, . 1 . L )
Org = Z”yr[l — Koy — 1=, T—2] sin@ + 5vh(1 — Ko)sin 20 + 3yr(1 — Ko) sin 30. (9.30)

On the boundary of the cavity, for r = a, the stresses are

r=a:o, = —4yh(l+ Ko) + jral; z — — Ko] cos§ — 37h(1 — Ko) cos 26 (9.31)
—17a(1 — Kq) cos 30, (9.32)

1 1 2—-3v 1
r=a: o = —§”yh(1 “+ KO) — Z”ya[ 1 —. “+ 3K0] COS@ “+ §”yh(1 — Ko) COS 29 (933)
+17a(1 — Ko) cos 30, (9.34)
r=a:o.p= %”ya[l ro_ Ko| sinf + 1yh(1 — Ko) sin 26 (9.35)

—v

+1va(1 — Kj) sin 36. (9.36)

These stresses do not satisfy the boundary conditions of a cavity. This will be considered in some more
detail in the next section.

9.3 Atmospheric cavity

Consider an isolated cylindrical cavity, filled with gas, in an infinite medium. The pressure in the gas is
assumed to be equal to the atmospheric pressure, which is the zero level of all stresses. If the weight of
the gas is neglected the boundary conditions now are

r=a : Op = O, (937)
r=a : oq =0. (9.38)

These conditions are not satisfied by the stress state of the previous section, which consists of a simple
superposition of the gravity stresses and an upward force to take into account the loss of weight. Therefore
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some more solutions are added, taken from the general solution of elasticity problems in polar coordinates

(Timoshenko & Goodier, 1951).
By adding solutions of order 0, 1, 2 and 3 the boundary values will be as follows.

v

r=a:o,=—3vh(1+ Ko) — 2udo + 1va] — Ko cos ) — 4pA; cosf

1—v
—29h(1 — Kg) cos 20 + Capucos 20 — 3va(1 — Kq) cos 30 + Cspu cos 36,

v + 3KO] cos 0 + 4 Ay cos 6

— VUV

+19h(1 — Ko) cos 260 + 3Csp cos 20 + 1va(l — Ko) cos 30 4+ 3C3p cos 36,

2
r=a:0oy = —%”yh(l + Ko) + 214 — %”ya[ 1

1%
1—v
+29h(1 — Ko) sin 20 — Capusin 20 4 $ya(l — Ko) sin 39 — Cspusin 36.

T:a:ar(;:—kiﬂya[ —KO] sinf — 4pA; sin 6

The two boundary conditions can be satisfied if

The boundary values now are

r=a : op =0,

1-2v
1—v
+2vh(1 — Ky) cos 20 + ya(1l — Ky) cos 36,

r=a : oy =—7h(l+Ko) — iva[ + 2Ko] cos

r=a : oq =0.

(9.39)

(9.40)

(9.41)

(9.42)
(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

The total state of stress is, superimposing all solutions, and using the values (9.42) — (9.45) for the

constants,

1 CL2 1 CL2 2 2

=
—_

—1yh(1 - Ko)[1 - a—Q] [1—-3% ]cos 26
2 0 2 r

CL2 CL2 CL4
- K1~ ][+ % 4 con
2 1—2va? :
O = —%"yh(l + Kj) [1 + j—2] — %"ﬂ"[l + 3Ky + T;% - (—1 i o KO)%] cos 6

CL4 6
+iyr(1 - Ko)[1 - at4s
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2 2 2
Org = %"ﬂ”[l — 3—2] [1 + ﬁ% — Ko(l + j—2)] sin 6
CL2 CL2
+37h(1 = Ko)[1 = 5] [143—5]sin 20

2 CL2 4

el - Ky)[1 - j_Q] 1+ - 4?—4] sin 30. (9.51)

On the boundary of the cavity, for r = a, these expressions reduce to the boundary values (9.46) — (9.48).
The transformation formulas to cartesian coordinates are

x? 22

Tz
Umx:UTr_2+Utt_2+2UT0_2; (952)
r r r
2 2
z T Tz
Ospy = Opp—5 + Opp— — 2079 — 9.53
zZz ”’T’T2 ’]"2 T ’]"2, ( )
2 2
Tz Tz z¢—x
Oxz = Orrg = Ott 5 +ore FORE (9.54)

These equations enable to determine the stress components in cartesian coordinates. It may be noted
that in equations (9.49) — (9.51)

cosf = =, (9.55)
T
sinf = E, (9.56)
"
2'2 — $2
cos 20 = poR (9.57)
2
sin20 = =2, (9.58)
T
2(2% — 32?)
cos 30 = T, (959)
2 .2
singg = LBZ — 1) (9.60)

r3
9.4 Displacements

In this section the displacements due to the excavation of the cavity will be determined. This means that
the displacements are considered with respect to the position in the initial state.
The displacements due to the singular solution of the point load in an infinite medium are

2
S
Uy = Sul =) 72’ (9.61)
va? ry x?
Uy = Sal—1) (3 —4v) log(a) + T—Q], (9.62)

where d denotes the depth of a fixed point.
The displacements due to the additional solutions can be expressed in terms of cartesian coordinates
by using the transformation formulas

um:ursin9—|—utcos€:urz+utf, (9.63)
T T

uz:urcosﬁ—utsint?:uri—utz. (9.64)
T T
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This gives

Aoa’z  241a%°zz  Chd’z 2
= + +

2 2 2 2, @
Uy . = 5 [4(3: —vrf)+ (32 —«x )T—2]
Cs0’T2 1 002 302y 4 (1— d) (s — 22) + 4(2% — 22) % 9.65
I [a(:2 — 3%) + (1— ) (2 — %) +4(:2 — %) 5], (9.65)
Apa?z  A1a?(2% —2?)  Caa’z s o 5 N
Uy = 2 + = 5 [4(1/7" —2°)+ (2 — 3z )T—2]
Csa® 29,2 2 4 4 4 2_2 4 a?
—|—46 [42%(32% — 2%) + (1 — 4v)(2* — 2*) + 2(2" — 622 —|—z)—2] (9.66)
r r

In the program MINDLIN the approximate solution derived in this chapter can also be presented. It
appears that this approximation is reasonably good when the parameter r/h is very small, indicating a
small deep cavity.
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A. BOUSSINESQ PROBLEMS

In this appendix a general solution is derived for the stresses and displacements in a half plane, for the
case of a loading at the surface consisting of a symmetric distribution of normal stresses, see figure A.1.
It should be noted that the surface y = 0 is free of shear stresses, and the distribution of the normal

Y

bl i

Figure A.1. Boussinesq problem.

stresses at that surface is symmetric.
A general solution will be derived, using the Fourier transform method (Sneddon, 1951).

A.1 Basic equations for plane strain elasticity

The basic equations for a homogeneous isotropic linear elastic material, deforming under plane strain
conditions are the equations of equilibrium, Hooke’s law, and the equations of compatibility. The equa-
tions can be presented in a compact form by expressing the equations of equilibrium in terms of the
displacements u and v in z- and y-direction, respectively. These equations (the Navier equations) are

de 0O%u 0O%u
mo— + 92 + o 0, (A1)
2 2
m—ae AL 0, (A.2)

8z 0a2 T oy T
where e is the volume strain,

ou Ov

€=a + 3y (A.3)
and m is an elastic parameter, related to Poisson’s ratio v or the Lamé constants A and p by
mZIEQV:A#. (A.4)
The stresses can be derived from the displacements by the relations
ez _ (1) + 222 (A.5)
I ox
T _ (g —1)e + 222, (A.6)
Iz dy
Oay _ Ou  Ov (A7)

po Oy Ox
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A.2 Fourier transforms

For a symmetrical type of loading it can be expected that the vertical displacement v is also symmetric,
and the horizontal displacement u is anti-symmetric. In that case it is appropriate to express these
displacements as

u(z,y) = /000 U(a, y) sin(az) da, (A.8)
v(x,y) = /0°° V(a, y) cos(ax) da, (A.9)
where U and V' now are the Fourier transforms of v and v. The inverse transforms are (Sneddon, 1951)
U(a,y) = %/000 u(zx,y) sin(ax) dz, (A.10)
V(a,z) = % /0°° v(x,y) cos(azx) dx. (A.11)
The volume strain e can be expressed as
e(x,y) = /°° E(a,y) cos(ax) da, (A.12)
0
where
E_aU+(Z_‘y/, (A.13)

The two basic differential equations (A.1) and (A.2) are satisfied when the Fourier transforms satisfy the
equations

2
—ma?U — mag—‘y/ + (?3712] — U =0, (A.14)

ou 8V 9V,

This is the transformed form of the problem.

A.3 Solution

The general solution of the equations (A.14) and (A.15), vanishing for y — —o0, is
U = [A+ mayB] exp(ay), (A.16)
V =[-A+ (m+ 2)B — mayB] exp(ay), (A.17)

where A and B are as yet undetermined constants, possibly functions of the transform parameter o.
This solution can be obtained using standard techniques from the theory of linear differential equations.
Its validity can easily be verified by substitution into the differential equations (A.14) and (A.15). The
constants A and B must be determined from the boundary conditions.
The condition that the shear stress o;, = 0 for y = 0 leads to the relation

B = A, (A.18)
so that the solution can now be written as

U = A(1 4+ may) exp(ay), (A.19)
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V = A(1 +m — may) exp(ay). (A.20)

The last remaining constant A must be determined from the boundary condition for the normal stresses.
The Fourier transform of the normal stress oy, is defined by

Oyy = / Syy cos(az) da. (A.21)
0
Using the expression (A.6) it is found that
Sy =2mAa(l 4+ ay) exp(ay). (A.22)
W

It is assumed that the boundary condition for the normal stresses is

y=0 : oy =q(x). (A.23)
In terms of the Fourier transform this boundary condition is
2 (o)
y=0 : Sy = —/ q(z) cos(ax) dz. (A.24)
T Jo
It follows from (A.22) and (A.24) that
1 1 [
A= —— —/ q(z) cos(ax) dz. (A.25)
mrp o Jo

This completes the solution. The only constant in the problem appears to be the Fourier transform of
the loading function, except for a multiplication factor.

The displacements are, with (A.8), (A.9), (A.19) and (A.20),

u= / A (1 + may) exp(ay) sin(ax) da, (A.26)
0
v= / A (1 4+ m — may) exp(ay) cos(ax) da. (A.27)
0
It now follows that
Ou 4 Qv 2/00/1 (ay) cos(az) d (A.28)
=—+—= e co .
o oy ; aexp(ay) cos(ax) dao,
Furthermore
0 0 °
f= 8_Z — 3_Z = 2my/0 Aa? exp(ay) cos(ax) da, (A.29)
and
g= Ou + 9 = 2my/ Ac? exp(ay) sin(ax) da. (A.30)
3y 33: 0
The stresses can easily be expressed into these three quantities,
Oue = mue + pf, (A.31)
Oyy = mpe — if, (A.32)
Opy = 1. (A.33)

Because at the surface y = 0 the function f vanishes, it follows that at this surface 0., = oy,. This is a
well known property of the Boussinesq problem.
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Of particular interest is the displacement of the surface y = 0. With (A.27) it is found that
vo=(1+ m)/ A cos(ax) da. (A.34)
0

The mathematical problem now remaining is the evaluation of the integral in (A.25), and then the
evaluation of the integral in (A.34). In many cases, the first integral can be calculated, but the second
one does not converge. This is a well known result, which is a consequence from the fact that the
displacements due to a loading which has a non-zero resultant force has a logarithmic singularity. If
the resultant force of the load is zero, however, the integrals may be evaluated, depending upon the
mathematical complexity of the functions, of course. Otherwise, when the integral (A.34) does not
converge, it may well be possible to determine its derivatives, which are needed to evaluate the stresses.

A.4 Example

As an example we will consider the function
2 2
g a°—x

It may be noted that the total load on the surface due to this stress distribution is zero, because its
integral is zero,

/000 q(z)dx = 0. (A.36)

In this case the integral in (A.25) can indeed be evaluated in a relatively simple way, so that

pa®

A= T exp(—aa). (A.37)
This means that the surface displacement is
2 1 o)
vg = Z%_;m)/o exp(—aa) cos(ax) do. (A.38)

This integral is easy to evaluate. The result is

_pa(l+m) a®
 2mp a? 422’

Vo (A.39)
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B. SOME FOURIER TRANSFORMS

In this appendix some Fourier transforms are assembled, mainly from the literature. These integrals are
used in the paper or in other appendices.

A well known Laplace transform (Churchill, 1972), which can easily be derived by using partial differen-
tiation, is

/O cos(at) exp(—st) dt = ﬁ (B.1)
By a simple change of notation this integral can also be written as a Fourier cosine transform,
e h
/0 exp(—ah) cos(ax) da = i (B.2)
Using the Fourier inversion theorem (Sneddon, 1951), it now follows that
z/OOLCO( )dx = exp(—ah) (B.3)
7 ) e s(ax) dz = exp(—ah), .
or
/OO L cos(az)dz = 2= exp(—ah) (B.4)
—_ az)dr = — exp(—ah). .
s hZta? 2n P
Differentiation of (B.4) with respect to h gives, after division by —2h,
e 1 T
A m COS(O[CC) dx = m(l —+ O[I’L) exp(—ah). (B5)
Because h? — x? = 2h? — (h? 4 2?) it follows from (B.4) and (B.5) that
© hZ 2 T
‘/0 m COS(O[CC) dr = 7 exp(—ah) (BG)
Differentiation of (B.5) with respect to h gives, after division by —4h,
e 1 T 9
/0 (GRS cos(ax) dx = W[3 + 3ah + (ah)?] exp(—ah). (B.7)
Because h? — 322 = 4h? — 3(h? + 2?) it follows from (B.5) and (B.7) that
© hZ— 32? Ta?
‘/0 m COS(O[CC) dr = E exp(—ozh) (BS)
Differentiation of (B.7) with respect to h gives, after division by —6h,
e 1
A m COS(O[CC) dr =
- 96?’7[15 + 15(ah) + 6(ah)® + (ah)?] exp(—arh). (B.9)

Because h* — 622h? 4+ z* = 8h* — 8h%(h% + 22) + (h? + 22)? it follows from (B.5), (B.7) and (B.9) that

/°° ht — 622h2 + 24 rad
) 12

(h2 + z2) cos(ax) dz = —— exp(—ah). (B.10)
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Now returning to the second integral, eq. (B.2), it follows, by differentiation with respect to h, that

0o h2 _ x2
/0 a cos(ax) exp(—ah) da = CETEk (B.11)
Differentiating this equation once more with respect to h gives
e 2h(h? — 322
/0 o? cos(ax) exp(—ah) do = W (B.12)
Differentiating equation (B.12 with respect to h gives
> 6(h* — 6h°z* + a*
/0 o® cos(ax) exp(—ah) da = ( e ;)j =) (B.13)

It may be noted that (B.11), (B.12) and (B.13) are the inverse Fourier transforms of (B.6), (B.8) and
(B.10). Differentiating equation (B.13) once more with respect to h gives
_ 24h(h* — 10h%2? + 5z*)

/0 o cos(ax) exp(—ah) da = 2+ 27 . (B.14)

Integration of eq. (B.2) with respect to h gives

<1

/ — exp(—ah) cos(ax) da = —log /2 + h2. (B.15)
0 (0%

It should be noted that this integral is determined up to an arbitrary integration constant. This constant

remains undetermined, because the singularity in the integral cannot be removed. For that reason the

integral is given by Bateman (1954), formula (1.4.2), in the form

| Hlesp(-ah) — exp(-at]cos(o) do = 1o £ (B.16)
—[exp(—ah) — exp(—ab] cos(azx) da = 3 log ———. .
0« P P 298 2 + h?
Another well known Laplace transform is
/O sin(at) exp(—st) dt = 52;#6@ (B.17)
Written in the notation of a Fourier sine transform this integral is
/0 sin(ax) exp(—ah) da = ﬁ (B.18)
Integration with respect to h gives
*1 . T
/ — exp(—ah) sin(az) do = arctan(ﬁ). (B.19)
0 (0%

The integration constant has been taken such that in the limiting case  — 0 both sides of the equation
tend towards zero. The integral (B.19) can be found in Bateman (1954), formula (2.4.2).

Differentiation of eq. (B.18) with respect to h gives

< 2hz
/0 asin(az) exp(—ah) da = (CET=iEk (B.20)
Repeating the differentiation with respect to h gives
° . 2x(3h? — 2?%)
/0 o? sin(ax) exp(—ah) da = W (B.21)
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Another differentiation with respect to h gives

o 24zh(h? — 2?
/0 o® sin(ax) exp(—ah) da = H

Differentiating this once more with respect to h gives

o 24z(5h* — 10h%2? + 2%)
4 s J— p—
/0 a” sin(ax) exp(—ah) da (h2 + 22)5

This completes the derivation of the Fourier integrals needed in the paper.
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C. FILON’s method for Fourier integrals

A method for the numerical evaluation of Fourier type integrals, i.e. integrals involving the product of
some given function with a factor sin(kz) or cos(kz), has been developed by Filon (1928). This method
is presented below, using complex variable notations.

C.1 Basic principles

In many fields of applied mathematics it is sometimes convenient to represent a (complex) function f(z)
by its Fourier series expansion (Sneddon, 1951; Korn & Korn, 1968)

f@) =" By exp(ikz), (C.1)

k=—o0
where the coefficients By, can be calculated from the integrals

1 2w
By =— f(z) exp(—ikz) dx. (C.2)
2T 0
The integrals in the expression (C.2) can sometimes be calculated analytically, but often it is required
to determine them by using an approximate numerical method. The integrals are then considered as the
sum of a large number (n) of integrals over a small interval, by writing

n—1
Be =Y Jij, (C.3)
j=0
where
1 a+2h
Jij = o f(z) exp(—ikz) dx, (C4)

a

and where a = 27j/n and h = 7/n. Direct numerical evaluation of integrals of the type (C.4) is often
inaccurate, because of the oscillating character of the integrand, which results in an approximation in
which many positive and negative contributions must be added to obtain the final result. Errors may
then accumulate so that the final result is not very accurate, especially for large values of k.

Following the success of Simpson’s method for the numerical evaluation of integrals of non-periodic
functions, Filon proposed to write, in an arbitrary interval a < x < a + 2h,

f@) = 55 (i = 202+ t3), (C.5)
where

t1 =(a+2h—2x)(a+h—z)f(a), (C.6)

ts = (a+ 2h— 2)(a — 2)f(a+h), .7

ts = (a+h —2)(a — 2) f(a + 2h), (C.8)

These formulas express that the function f(x) is approximated by a continuous quadratic form passing
through the values at the points © = a, = a + h and x = a + 2h. The function exp(—ikz) in the
integrand is not approximated.

After substitution of (C.5) into (C.4), and evaluation of the various integrals one obtains

gy = EPE) e, 4 e expl-2ikh)] f(a)
+c3 + ca exp(—2ikh)] f(a + h) + [c5 + cg exp(—2ikh)] f(a + 2h) }, (C.9)
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where

c1 = —2ik*h? + 3kh + 2i, (C.10)
co = kh — 2i, (C.11)
cg = —4kh — 4i, (C.12)
cy = —4kh + 4i, (C.13)
cs = kh + 2i, (C.14)
c¢ = 2ik*h* + 3kh — 2i. (C.15)

This completes the calculation of the integral.
The procedure fails for £ = 0, but in that case the classical Simpson’s formula may be used,

1 a+2h

2

F@)do = 2= [F(a) + 4f(a + )+ f(a +2h)]. (C.16)

a R

Joj =

It can be shown that the general formula (C.9) reduces to (C.16) for k — 0.

The formulas given in this section can easily be incorporated into a computer program. An example
of the application of such a program is given below. It may be noted that a more accurate approximation
may be obtained if the function f(z) is approximated by a polynomial of higher order than 2, say a
polynomial of fourth order (Verruijt, 1969). The additional accuracy obtained in this way is usually not
necessary, however, as the approximation presented above is usually sufficiently accurate.
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C.2 Example

As an example the function f(z) = exp(x/4) is considered, on the interval from z = 0 to x = 27. For
this case the integrals (C.2) can easily be calculated, with the result

2 144ik . ow

= m[exp(§ - 1), (C.17)

k

which is valid for positive and negative values of k. The numerical results for the first 20 positive terms
are shown in table 1, as calculated using a subdivision of the interval into 200 parts. The analytical

k Re(Bk) Im(Bk)
0 | 2.425825 | 0.000000
1] 0.142696 | 0.570782
2 | 0.037320 | 0.298563
3 | 0.016730 | 0.200758
4 1 0.009439 | 0.151024
5 | 0.006049 | 0.120989
6 | 0.004204 | 0.100901
7 | 0.003090 | 0.086526
8 | 0.002367 | 0.075733

9 | 0.001870 | 0.067332
10 | 0.001515 | 0.060608
11 | 0.001252 | 0.055104
12 | 0.001052 | 0.050516
13 | 0.000897 | 0.046633
14 | 0.000773 | 0.043304
15 | 0.000674 | 0.040419
16 | 0.000592 | 0.037894
17 | 0.000525 | 0.035666
18 | 0.000468 | 0.033686
19 | 0.000420 | 0.031913
20 | 0.000379 | 0.030318

Table C.1. 20 Coefficients

results are exactly equal to these results, at least up to the 6 decimals shown in the table.

C.3 Accuracy of the Fourier approximation

The accuracy of the numerical calculation of the Fourier coefficients does not mean that the Fourier
series is an accurate approximation of the original function. To illustrate this point it is recalled that the
integrals (C.2) are the coefficients of the Fourier series expansion (C.1)

f@) =" By exp(ikz). (C.18)

k=—o0

The sum of the series, using the numerical calculation of the first 20 coefficients, is shown in figure C.1,
together with the original function f(x) = exp(x/4). It appears that the approximation with 20 terms is
reasonably good, except near the two ends. This is due to the fact that the function to be approximated is
not periodic itself, and the Fourier series approximation is always periodic. These deviations will always
occur, even for very large values of n. For periodic functions the approximation is generally much better,
and then the series usually converges much faster. One may also say that the Fourier series approximation
is not really suitable for non-periodic functions.
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Figure C.1. Fourier series approximation, n = 20
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