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1. Introduction

In this report it is investigated whether certain problems of stresses and deformations caused by defor-
mation of a tunnel in an elastic half plane can be solved by the complex variable method, as described
by Muskhelishvili (1953). The geometry of the problems is that of a half plane with a circular cavity,
see figure 1.1. The boundary conditions are that the upper boundary of the half plane is free of stress,

Y

Figure 1.1. Half plane with circular cavity

and that the boundary of the cavity undergoes a certain prescribed displacement, for instance a uniform
radial displacement (the ground loss problem) or an ovalisation.

In the chapters 2 — 6 of this report the complex variable method for the solution of elasticity problems
is recapitulated, and some simple examples are elaborated. These include problems for a continuous
half plane and problems for a circular ring. By combining the techniques used in these chapters the
actual problem of the half plane with a circular cavity can be solved, starting in chapter 7. Chapter 7
describes some properties of the conformal transformation. Chapter 8 contains the main derivations of
the complex equations appearing in the boundary conditions. In this chapter the consequences of the
stress-free boundary at the ground surface are investigated, and the basic equations are given for the
case that the stresses are prescribed at the boundary of the circular cavity. In chapter 9 the problem for
the case of a prescribed displacement at the boundary of the circular cavity is solved. This solution is
elaborated in chapter 10. A computer program to validate the solution is decsribed in chapter 11.

It should be noted that in the classical treatises of Muskhelishvili (1953) and Sokolnikoff (1956) on the
complex variable method in elasticity, the problems studied here are briefly mentioned, but it is stated
that ”difficulties” arise in the solution of these problems, and it is suggested to use another method of
solution, such as the method using bipolar coordinates. It is the purpose of this report to show that these
”difficulties” can be surmounted.

In this report two elementary problems are considered in detail. These are the problem of a halfplane
with a circular cavity loaded by a uniform radial stress, and the problem in which a uniform radial
displacement is imposed on the cavity boundary (this is usually called the ground loss problem). In a
later report it is planned to consider Mindlin’s problem of a circular cavity in an elastic half plane loaded
by gravity.

The results of the calculations are shown in graphical form in chapters 10 and 13, which may be
of particular interest for tunnel engineering. These results are also available in the form of two com-
puter programs (Jeffery.exe and GroundLoss.exe), which will show numerical or graphical results. These
programs may be downloaded from the author’s website http://geo.verruijt.net.

The contents of this report form the background material of two papers on the same subject (Verruijt,
1997; Verruijt, 1998).
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2. Basic equations

In this chapter the basic equations of plane strain elasticity theory are presented, using the complex
variable approach (Muskhelishvili, 1953).

2.1 Plane strain elasticity

Consider a homogeneous linear elastic material, deforming under plane strain conditions. In the absence
of body forces the equations of equilibrium are

00ze = 00ys
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The stresses can be expressed in the displacements by Hooke’s law,
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Substitution of eqs. (2.3) — (2.5) into the equations of equilibrium (2.1) and (2.2) gives
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Vg + A+ p)—(=—=+—-2%) =0 2.6
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These are the equations of equilibrium in terms of the displacements.
It follows from (2.6) and (2.7) that
Ju Ju
ViI(=2+ 2E) =0 2.8
G * 5y (28)
Furthermore it follows from (2.3) and (2.4) that
Ouy, Ou
Thus it follows that
V2(04z + 0yy) = 0. (2.10)
2.2 Airy’s function
It follows from (2.1) that there must exist a single-valued function B(z,y) such that
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= el 2.11
g (?y Oy ox ( )
Similarly, it follows from (2.2) that there must exist a single-valued function A(x,y) such that
0A 0A



Because 0,y = 0y, it follows that
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= _ = 2.13
or Oy (2.13)
This means that there must exist a single-valued function U such that
ou ou
= B=—. 2.14
5 oy (2.14)
The stresses can be expressed in the function U, Airy’s stress function, by the relations
02U 02U 02U
With (2.10) it follows that Airy’s function must be biharmonic,
V2V3U = 0. (2.16)
In the next section a general form of the solution will be derived, in terms of complex functions.
2.3 The Goursat solution
In order to solve eq. (2.16) we write
V32U = P. (2.17)
Because U is biharmonic the function P must be harmonic,
V2P = 0. (2.18)
The general solution of eq. (2.18) in terms of an analytic function is
P =Re{f(2)}, (2.19)
where f is an analytic function of the complex variable z = x + iy. We will write
Q@ =Im{f(z)}, (2.20)
so that
f(z) =P +iQ. (2.21)
Because f(z) is analytic it follows that the functions P and @ satisfy the Cauchy-Riemann conditions,
P P
or 0 op__0Q 0
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A function ¢(z) is introduced as the integral of f(z), apart from a factor 4, so that
dp
— =3 . 2.2
1) (2.23)
The function ¢(z) is also an analytic function of z. If we write
6(2) = p+ g, (2.24)
it follows that
dp Op .0q .
T~ or Tigy i/ =3P+ 3. (2.25)
Thus, using the Cauchy-Riemann conditions for p and g,
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—=_—=23P — =——=—-20Q. 2.26
or oy Ay oz 19 (2.26)



We now consider the function

F=U~37¢(2) — 526(2), (2.27)
or
F=U~g3(z—iy)p+iq) — 5(z +iy)(p —iq) = U — ap — yq. (2.28)
Taking the Laplacian of this expression gives
0 0
V2F = V2U — 2V — yV2q — 228 2% (2.29)
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Because p and ¢ are the real and imaginary parts of an analytic function their Laplacian is zero. Thus,
using (2.26),

V?F = VU - P. (2.30)
Finally, using (2.17) it follows that the Laplacian of F is zero,

V2F =0. (2.31)
This means that we may write

F =Re{x(2)} = 5{x(2) + x(2)}, (2.32)
where x(z) is another analytic function of z. The imaginary part of x(z) will be denoted by G, so that

x(z) = F+iG. (2.33)
From (2.27) and (2.32) it follows that

2U = Z¢(z) + z2¢(2) + x(2) + x(2), (2.34)
U =Re{zé(z) + x(2)}. (2.35)

This is the general solution of the biharmonic equation, first given by Goursat. In the next sections the
stresses and the displacements will be expressed into the two functions ¢(z) and x(z).

2.4 Stresses

The stresses are expressed in the second derivatives of Airy’s function U. First the first order derivative
of U will be determined. The starting point is equation (2.28), in the form

U=F+xp+yq. (2.36)
Here F', p and ¢ are harmonic functions, and p and ¢ are complex conjugates. Partial differentiation gives

U OU _OF OF 0y op) 00 0
9 —|—zay =5 —|—zay —|—p—|—zq—|—x(ax —|—zay)—|—zy(ay Zax)' (2.37)

The first two terms in the right hand side of eq. (2.37) can be expressed in the function x(z) by noting
that

dx OF _9G O8F OF

so that
oF OF
L e) (2.39)



dx(z
W(z) = fz( ). (2.40)
z
The third and fourth terms in the right hand side of eq. (2.37) together just form the function ¢(z), see
(2.24).

The last terms in the right hand side of eq. (2.37) can be expressed in the function ¢(z) by noting
that

o _op . 9a _Op Op
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From these equations it follows that

— dp .Op . ,0q .0q

(9 O 9q _ 9%\ 2.4

2¢'(2) x(ax—i-zay)—i-zy(ay Zasc) (2.43)
All this means that eq. (2.37) can be written as

ou  oU —— ——

U i 52+ 253 + 000). (2.44)

ox Ay

In order to obtain expressions for the second order derivatives of U, the quantity OU/0x + i0U/dy is
differentiated with respect to z and y. First differentiation of eq. (2.37) with respect to x gives

0’U . 9°U 0’F  9°F Op .0q op .Op
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Secondly, differentiation of eq. (2.37) with respect to y gives, after multiplication by —i,
02U 0?U  9*F 0?F 0 0 0 0
i - — +(_q_i_p)+(_q_i_q)
Oy? Oxdy  Oy? Oxdy dy Oy dy Oz
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In these equations the first two terms can be expressed into the second derivative of x, that is the first
derivative of 1, by noting that

Py dy  PF PF  PF  PF

dz2 ~ dz 022 Z(?:c(?y - Oy? _Z&’cay’ (2.47)
so that

9’F | 9°F -
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and

9’F | 9°F —_—

8—y2 - Z(?:c(?y = —¢/(2), (2.49)

The terms 3-6 in egs. (2.45) and (2.46) add up to 20p/dz, respectively 20q/dy because dp/dy = —dq/ 0z,
and using (2.41) and (2.42) these can be written as
op _ ,0q _ —

28_50 = 28_y =¢'(z) + ¢'(2). (2.50)



Finally the last terms in eqgs. (2.45) and (2.46) can be expressed into the second derivative of ¢ by noting
that it follows from differentiation of (2.41) or (2.42) that

¢  9*  0%p 9% 0%q

07 " o 'ozoy  wdy lone (2.51)

or
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ce__ 22, - iz g (2.52)
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From these equations it follows that
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Substitution of all these results into (2.45) and (2.46) gives, finally,
U 1 0°U — " PYIOaY i
T i = D + )+ T + T, (2.55)
and
0U 0V T +6()+ T -0 (2.56)
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It follows, finally, by using the expressions for the stresses in terms of Airy’s function, and by adding and
subtracting the two equations (2.55) and (2.56), that

Oue + 0yy = 2{0'(2) + ¢'(2)}, (2.57)
Oyy — Ozz + 2i04y = 2{Z¢" (2) + ¢'(2)}. (2.58)

These are the equations of Kolosov-Muskhelishvili.

2.5 Displacements

In order to express the displacement components into the complex functions ¢ and ¥ we start with the
basic equations expressing the stresses into the displacements, see (2.3) and (2.4),

Ouy Ouy auy

Oz = 214 o +A( o 3y =), (2.59)
8u Oou, Ou
Addition of these two equations gives
B Oug ~ Ouy
Oua + Oyy = 20N+ p) (5= 5+ 3 ). (2.61)

With (2.15) and (2.17) we have
Opz + Oyy = VU = P, (2.62)
so that we may write

Ouy 02U A

"or T oF e i



ou, O*U A
- - __ -2 p 2.64
Foy = 022 ~ 200+ p) (2:64)

Because V2U = P these equations may also be written as

Ougy 02U A+ 2u

2 =——+4+ ——-P 2.
Mor = T T2t (2.65)
Ouy PU  A+2u
——=—-——+——_P. 2.66
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According to (2.26) the quantity P may also be written as 40p/dx or 49¢q/dy. This gives
Ouy 02U 2(\+2u) Op
2 = — — 2.67
K ox ox? + A+p Oz’ (2:67)
2 2 2
du, 90U (A +2p) 9q (2.68)
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The two equations have now been obtained in a form in which in the first equation all terms contain a
partial derivative with respect to x, and in the second equation all terms contain a partial derivative with
respect to y. Integration gives

U 2(\+2u)

2pue = =g+ =1 PR f®), (2.69)
_oU 2\ +2pu)
2puy = — w T q+9(x), (2.70)

where at this stage f(y) and g(x) are arbitrary functions. In order to further determine these functions
we use the expressions for the shear stress o,. Differentiation of (2.69) with respect to y, of (2.70) with
respect to x, and addition of the results gives

8um+%)7_282U 2()\—1-2#)(@4_@) df | dg
Ay ox’ T 0x0y A+p 0y Oz dy dx’

2u( (2.71)

Because p and ¢ are complex conjugates it follows that dp/dy + dq/0x = 0. Furthermore it follows from
(2.5) and (2.15) that

Ougy % 9 9?U

2 — 20, = — : 2.72
i oy Oz ) oy 0xdy (2.72)
Comparison with (2.71) shows that
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The first term is a function of y only, and the second term is a function of x only. This means that the
only possibility is that
df _ dg

_2Z2 —_9 2.74
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where ¢ is an arbitrary constant, and the factor —2u has been included for future convenience.

It follows from (2.74) that

f=2ula—cy),  g=2ub+2pe), (2.75)

where a and b are two more arbitrary constants.

Substitution of (2.75) into (2.69) and (2.70) gives

U 2(\+2u)
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. dr | A+ pu
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U 2(\+2u)

2ty = ——
Hy = oy T T
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The last terms in these expressions represent a rigid body displacement, of magnitude a in z-direction,
b in y-direction, and a rotation over an angle . If this is omitted, on the understanding that when
necessary such a rigid body displacement can always be added to the displacement field, we may write

., 0U 00U\ 2(N42p) .
2p1(ug + iuy) = —( o i 8y) + T . (p +iq). (2.78)
The functions p + iq together form ¢(z), see (2.24). With (2.44) it finally follows that
2oty + i) = K(2) — 20 (2) — D(2), (2.79)
where
A+ 3u
=T =3 4. 2.80
TTONT ] v (2.80)

Equation (2.79) was also derived first by Kolosov-Muskhelishvili.
It may be noted that for plane stress conditions the same equations apply, except that in that case
the coefficient x has a different value,

__BA+b6p 3-v
3N +2n 14

(2.81)

2.6 Boundary conditions

The solution of a certain problem is determined by the boundary conditions. These may refer to the dis-
placements, or to the surface tractions. In the first case the boundary condition can easily be interpreted
in terms of the quantity u, + iu,, as given by eq. (2.79). In the second case it is sometimes convenient to
specify the boundary conditions in terms of 0, —i04, or in terms of oy, +%0y,, which can immediately be
expressed in the stress functions ¢(z) and ¢(z) through the relations (2.57) and (2.58). This is especially
convenient for horizontal and vertical boundaries. For straight boundaries under a constant angle it may
be convenient to use the transformation formulas

Ugr + ity = (ug + fuy) exp(—if), (2.82)
Ogrg! + Oyryr = Ogg + Oyy, (283)
Oyry — Ogigr + 21051y = (Oyy — Oga + 2i04y) exp(2i0), (2.84)

where 6 is the angle over which the axes x and y must be rotated to coincide with 2’ and y'.

In the more general case of a curved boundary, see figure 2.1, it is more convenient to derive a formula
in terms of the integral of the surface tractions. Let the boundary condition be that the surface tractions
t» and t, are prescribed, as a function of a coordinate s along the boundary (such that the material is to
the left). We may write

ty = OzzCOSQ+ Oy sina, (2.85)
ty = 0Ogycosa-+oyysina. (2.86)
Because along the boundary dy = dscosa and dxr = —dssin «, and the stresses can be related to Airy’s

stress function U through the equations (2.15) it follows that
_0?Udy  0°U dx d ,oU

tm_a—yz’E“L—axayE:E(a_y)’ (2.87)
02U dx 0%°U dy d ,oU
W= T2 ds  dwoyds — s\ ow) (2:88)



Figure 2.1. Boundary condition

These two equations can be combined into a complex equation

te + it ——'i(a—UJr'a—U)
@ T = s o Zay'

If the boundary traction is integrated along the boundary, and this integral is defined as
so

where s is some arbitrary initial point on the boundary, then we may write

Fitim+o=29 ;90
ox Ay

where C' is some arbitrary constant of integration. With (2.44) this gives, finally,

Fiy+iF + C = ¢(2) + 2¢' (2) + ¢(2).

(2.89)

(2.90)

(2.91)

(2.92)

This means that the integral of the surface tractions defines the combination of functions in the right

hand side.
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2.7 Recapitulation

The formulas can be recapitulated as follows. The solution can be expressed by two analytic functions
¢(z) and 1(z). The stresses are related to these functions by the equations

Gua + 0y = 2 () + TN, (2.93)
Oyy — Ozg + 2i04y = 2{Z¢" (2) + ¢/ (2)}. (2.94)

The displacements are related to the analytic functions by the equation

2p(us +iuy) = £p(2) — 2¢'(2) = ¥(2), (2.95)

where for plane strain

A+ 3u
=" =3 4. 2.
" A p 8- dv (2.96)

and for plane stress

L _A+6p_3-v
CO3N+2u 14

(2.97)

The integral of the surface tractions, integrated along the boundary, is related to the analytic functions
by the equation

Fi+iFy + C = ¢(2) + 20/ (2) + ¢(2). (2.98)

The techniques to determine the complex functions ¢(z) and ¢(z) from the boundary conditions will be
demonstrated in the next chapters.

The two basic problems of the mathematical theory of plane strain elasticity are that along the entire
boundary either the surface tractions or the displacements are given. In the first case the function F
is given along the boundary, and the functions ¢(z) and ¥ (z) must be determined from (2.98). In the
second case the function p(uy+iu, is given along the boundary, and the functions ¢(z) and (%) must be
determined from (2.95). It may be noted that these equations are very similar (they differ only through
the factor k), so that the methods of solution may also be very similar.

It may also be noted that the addition of an arbitrary constant value to the two functions ¢(z) and ¥(z)
does not affect the stresses, but leads to an additional homogeneous displacement. This may represent
an arbitrary rigid body displacement of the field as a whole. In the case of a simply connected region,
with a single boundary, with the surface tractions defined at the boundary (this is the first boundary
value problem), the displacements are determined up to an arbitrary constant. The constant C' in (2.98)
then may be taken as zero, without loss of generality, and provided that it is remembered that a rigid
body displacement can be added to the displacement field. In the case of a multiply connected region,
when there are several disjoint boundary segments, the integration constant C' may be taken equal to
zero along one of the boundaries, but must be left as an unknown value on the remaining boundaries.

11



3. Solution of boundary value problems

In this chapter the general technique for the solution of boundary value problems for simply connected
regions, in particular regions that can be mapped conformally onto a circle (such as a half plane) are
discussed. In later chapters the theory will be applied to multiply connected regions, with circular
boundaries (a ring) and to problems for the half plane with a circular hole. Many of the solutions have
been presented also by Muskhelishvili (1953) and Sokolnikoff (1956).

3.1 Conformal mapping onto the unit circle

Suppose that we wish to solve a problem for an elastic body inside the region R in the complex z-plane.
Let there be a conformal transformation of R onto the unit circle v in the (-plane, denoted by

2= w(0): (3.1)
We now write

6(2) = $w(Q)) = B (). (3.2)

(z) = Pw(C)) = (0, (3.3)

where the symbol * indicates that the form of the function ¢, is different from that of the function ¢.
The derivative of ¢ is

iy dededC  ¢L(¢)
A P EA I

(3.4)

3.2 Surface traction boundary conditions

If the points on the boundary in the (-plane are denoted by o = exp(if), the boundary condition for a
problem with given surface tractions can be written as follows, starting from eq. (2.98),

F(0) +C = 6 (0) + (o) ig + ). (3.5)
or, omitting the symbols ,
F(0) +C = ¢(0) + f:,((?) /() + (). (3.6)

It is now assumed that the integration constant C' = 0, and that the boundary function F (o) can be
represented by a Fourier series

o0

F(o)=F(0)= Y Agexp(ikb) = f: Aot (3.7)

k=—o0 k=—o0
where the coefficients Ay can be determined from the Fourier inversion theorem,

1

T on

Ay, / " F(0) exp(—ik6) df. (3.8)
0

The functions ¢(¢) and ¥(¢) are analytic throughout the unit circle |{] < 1, so that they may be expanded
into Taylor series,

B() =Y arch, (3.9)
k=1
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B(¢) = brc™. (3.10)
k=0

Here it has been assumed that ¢(0) = 0, which can be done without loss of generality, because it does not
affect the stresses, and it has already been assumed that the displacements are determined apart from
some arbitrary rigid body displacement.

The boundary condition can be written as

o0 o0

i AkO'k:iakUk-l-mZkakUikJrl-FzgkUik, (311)
k=1

w'(o) k=1 k=0

k=—o00

where it has been used that & = exp(—if) = 0~!. The coefficients aj and by have to be determined from
this equation. The difficulties associated with this problem can best be investigated in successive steps,
by considering various examples.

3.3 Displacement boundary conditions

As mentioned before the problem with given boundary values for the displacements is very similar to
the problem with given surface tractions. Actually, if the displacements are given the basic equation is
eq. (2.95). If the given quantity 2p(u, + iu,) along the boundary is denoted as G(o), and this is again
represented by a Fourier series,

2u(uy +iuy) = G(o) = Y Byo¥, (3.12)

k=—o0

the system of equations will be, in analogy with (3.11),

3 Bt =rY ao* - “’/(U) S kawo =S o, (3.13)
k=—o0 k=1 w'(o) 1= k=0

The coefficients ax and by must be determined from this equation.

13



4. Problems for a circular region

In this chapter some problems for a circular disk are discussed. This is the simplest possible type of
problem.
For a circular region, of radius R, the mapping function is

z=w(() = R(, (4.1)
so that

W' (¢) = R. (4.2)
In this case we have

wlo) _ 43

W' (o) ’ (4.3)

4.1 Surface traction boundary conditions

If the surface tractions are given along the boundary, the boundary condition is

i AkO'k :iaktfk-i-ikako’ilwﬂ-i-igko’ik, (44)
k=1 k=1 k=0

k=—o0
or
Z AkO'k = Zak‘jk + Z (k+2)ak+20'7k+25k0'7k, (45)
k=—o00 k=1 k=—1 k=0
or
> Apo® =D aret +aro+ao + Y [by + (k+ 2)apso]o " (4.6)
k=—o00 k=2 k=0

In the right hand member the various terms have now been grouped together such that each term applies
only to a single power of . By requiring that the coefficients of all powers of o must be equal in the left
and right hand members the coefficients can be solved successively, starting with large positive powers of
o, and then going down to large negative powers of o. The result is

ak:Ak, k:2,3,4,..., (47)
ay = %Ala (48)
bk, :Z,k—(k+2)ak+2, k=0,1,2,.... (49)

To derive eq. (4.8) it has been assumed that A; is real. This can be shown to be equivalent to the
condition that the resulting moment on the body is zero. Furthermore the imaginary part of a; has been
set equal to zero, for definiteness.

Equations (4.7)—(4.9) are also given by Sokolnikoff (1956), p. 281.

4.2 Displacement boundary conditions

For the second boundary value problem, with given displacements, the system of equations can be estab-
lished in a similar way, starting from eq. (3.13). The result is

o0

Z Byo® = HZ axo” + kayo — @y o — Z[Ek + (k+ 2)Ek+2]afk. (4.10)
k=2

k=—o00 k=0
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If the coefficients By are known, the coefficients a; and by can be determined from this equation. In this
case the solution is

B
ar=—, k=23.4,..., (4.11)
K
- IQBl +El
o =Bt (4.12)
by = —B_j, — (k+2)apse, k=0,1,2,.... (4.13)

4.3 Examples

4.3.1 Example 1: Uniform tension

As a first example consider the simple case of a circular region under uniform tension, see figure 4.1. This
is a standard problem from the theory of elasticity. In this case the surface tractions are t, =t cosf and

Y

Figure 4.1. Circle under uniform tension

ty = tsinf, so that

0
F = z/ texp(ib) do = tR exp(if), (4.14)
or
F = tRo. (4.15)

An eventual constant integration factor has been omitted, on the understanding that this will only
affect the value of ¥(0), and can be incorporated into the rigid body displacement. The Fourier series
representation of the function F'(o) is very simple in this case,

Ay = tR, (4.16)

with all other coefficients Ay, being zero.
We now obtain from eqs. (4.7)—(4.9)

ar =0, k=2,34,..., (4.17)
a, = 3R, (4.18)
b, =0, k=0,1,2,.... (4.19)

Hence the functions ¢(¢) and 1(¢) are
¢(¢) = 5tRC, (4.20)

15



¥(¢) = 0. (4.21)
Because z = R( it follows that

o(z) = 3tz (4.22)

P(z) = 0. (4.23)
The stresses are, with (2.93) and (2.94),

Oan + Oyy = 2t, (4.24)

Oyy — Oz + 2005y = 0. (4.25)
Hence

Ozz = 1, Oyy =1, Oy = 0. (4.26)

This is the correct solution of the problem, with a constant isotropic stress in the entire disk.
The displacements are, with (2.95),

2p(ug + iuy) = (1 — 2v)tz + constant. (4.27)
The constant can be assumed to be zero, if the origin is assumed to be fixed. Thus
1-2
Uy = Y, (4.28)
2p
1-2v
= ty. 4.29
Uy % Y ( )

These are also well known formulas for the displacements in a disk under constant stress. It may be
noted that the coefficient 2u/(1 — 2v) may also be written as 2(A + p).
4.3.2 Example 2: Uniform stretching

As an alternative we may consider the case that the boundary of the circular region undergoes a uniform
radial displacement. In this case the boundary condition is

z=Rexp(if) : G =2p(us + iuy) = 2pug exp(if), (4.30)
or
G(o) = 2uugo. (4.31)
Equation (4.10) now gives
290 = K Z aro® + karo — @0 — Z[Ek + (k4 2)Tp42)0 . (4.32)
k=2 k=0

Assuming that a; is real we now find that all coeflicients are zero, except

a1 = H2_'u1u0 = (A + p)uo. (4.33)
Hence

?(¢) = (A + puog, (4.34)
or

6(z) = (A + p) “EOZ. (4.35)
The other function is zero,

P(z) = 0. (4.36)
The stresses are now found to be

Oue = 0y = 2(A + u)u—;, Gay = 0. (4.37)

This solution is in agreement with the previous one, and with the solution known from elementary
elasticity theory.
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5. Problems for a half plane

In this chapter elasticity problems for the half plane Im(z) < 0 will be considered. The region R in the

Y

Figure 5.1. Mapping of half plane on unit circle

complex z-plane is mapped conformally onto the interior of the unit circle y in the complex (-plane, see

figure 5.1. In this case the conformal transformation is
—il +¢ '
1-¢
Differentiation with respect to ¢ gives
21
1-0*

On the boundary ¢ = o and ( = ¢~!. This gives

2= w(() =

W(Q) = -

w(o)

(o)

1 -2

N[

g

5.1 Surface traction boundary conditions

In this case the boundary condition (3.11) is

o0 o0 o0
g Aot = g arc® —i—% g ka,o Ft!
k=1 k=1

k=—o0

o0 o0
—% Z kao F 1 + Z bro k.
k=0

k=1
This can also be written as

Z AkO'k = Zak‘jk + (EO + %El) + (51 +62)0'71
k=1

k=—o0

+> [Ek + 2k + Dagsr — (k= D)ag—1|o "

k=2

(5.1)

(5.4)

(5.5)

Because now in both the left hand and the right hand members all terms have been arranged in powers
of o the coefficients ay and b can be determined, successively. The solution of the system of equations is

ak:Ak, k:1,2,3,...,

17
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bo = Ag — 3a, (5.7)

bl = A,1 — az, (58)
bk = Z,k — %(k + l)ak+1 + %(k - 1)&]6,1, k= 2, 3, 4, ceee (59)
Actually, the expression (5.8) can also be covered by equation (5.9) if this is considered valid also for

k=1.

5.1.1 Example: Flamant’s problem

As an example consider the problem of a concentrated point load on a half plane (Flamant’s problem).
In this case the surface y = 0 is free from stress, except at the origin, where a point load of magnitude P
is applied, in negative y-direction, see figure 5.1. In this case

iy . 0, ifz>0,
F—z/(tx—i-zty)ds—{ P ifr<0 (5.10)
or, in terms of the coordinate € along the unit circle in the (-plane,
_J 0, iff<m,
F_{ P, iff>m. (5.11)
This function can be expanded into a Fourier series,
F(0) = Y Ayexp(ikf), (5.12)
k=—o0

where now

P 2w

Ay = —/ exp(—kif) db. (5.13)
2m S,

The result is

Ay = %P, (5.14)
P

Ay, =—, k=41,£345,... 1

k 7TI€, ’ 35 55 ’ (5 5)
A =0, k=42,44,46,.... (5.16)

We now find, from (5.6) — (5.9),
iP

=—, k=1 1
ag 7TI€, 53555 ) (5 7)
ar =0, k=2,4,6,..., (5.18)

P
by = 1P 1
0 2 o (5 9)
P
be = k=1,2,3,.... (5.20)
7k
b, =0, k=2,4,6,.... (5.21)

If we disregard the constant by, which can always be corrected by adding a rigid body displacement, and
which does not affect the stresses, we have

iP = Ck
HO=" 3 5 (522)

k=1,3

18



Ed

pO=23

-
k=1,3

A well known series is

1+¢ S
so that
P 1
00 = e,
P 1
R e

P
o(z) = = In 2,
2
P
$(z) = 5-Inz,
The derivatives are
P P
¢(2) = 5— = o— exp(—if),
2mz 2rr
iP iP .
§'(2) = 5oy = — o exp(~216),
, P P
P (2) = 0 exp(—16)

T 27z 2rr

The Kolosov-Muskhelishvili expressions for the stresses now give

2P
Oga + 0y = 2{¢'(2) + ¢/ (2)} = p sin 6,

Oyy — Ozz + 2i0my = 2{2(25”(3) + 1/)/(2)}

2P
= “—[sinf(sin® @ — cos? 0) + 2i cos O sin” 6].
or

From these it follows that

P
Ope = — sin 6 cos? 0,
r

2P
Oyy = — sin® 6,
wr

2P .
Opy = — cos O sin? 6.
y
r

These formulas are in agreement with the classical solution of Flamant.
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6. Problems for a circular ring

In this section we will consider an elastic circular ring, under the influence of surface tractions or prescribed
displacements along the the inner and the outer boundary, see figure 6.1. The radius of the outer boundary

Figure 6.1. Circular ring

is R, and the radius of the inner boundary is aR, where a < 1.

6.1 Surface traction boundary conditions

Let us first consider the case that along both boundaries the surface tractions are prescribed, and that
along both the loading function F' can be represented by a Fourier series. We then have

(=1: F= Y A", (6.1)
k=—o0

(l=a: F= Y Bk (6.2)
k=—oc0

Here it has been assumed that the ring in the z-plane has been mapped conformally onto a ring in the
¢-plane, such that the outer radius of the ring in the (-plane is 1.

The complex stress functions ¢(¢) and ¥(¢) are analytic throughout the ring-shaped region in the
¢-plane. It is assumed that they are also single-valued, so that logarithmic singularities can be ignored.
This means that they can be represented by their Laurent series expansions,

B = al"+> bl (6.3)
k=1 k=1
Q) =co+ Y e+ di¢F, (6.4)
k=1 k=1

The coefficients have been given a different notation for positive and negative powers of (, to avoid
negative indices. The series expansions will converge up to the boundaries |{| =1 and || = «.
The derivative of the function ¢(¢) is

¢'(¢) = kapC* T = kbp¢TH Y, (6.5)
k=1 k=1
In general the boundary condition for a given surface traction is given by (2.98),
F(G) +C = 0(60) + 2 516y + 91, (6.6)
w’(Go)

where (p is a point on the boundary. The conditions along the two boundaries will be elaborated
separately.
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6.1.1 Outer boundary

Along the outer boundary we have {y = o = exp(if), so that {; = 0~'. Because the mapping function is
w(¢) = R( it follows that in this case

w
—% = =o. (6.7)
w’(Go

With (6.5) the second term in the boundary condition is
U}(CO) (b/(co) — i kak07k+2 _ i k5k0k+2. (68)
w'(Co) k=1 k=1

This can also be written as
(%) F@) = a10 + 23 S (k200 S (k- 2B a0" 6.9
— Co) =T10 + CL2+Z( + 2)ag 420 —Z( — 2)bg—a0". (6.9)
w'(Co) k=1 k=3

The third term in the boundary condition is

U(Co) =T+ Y o F+ Y dpot. (6.10)
k=1 k=1
The complete boundary condition now is, with (6.6), and assuming that on this boundary C = 0,
Z Apo® = apo® +Zbkafk +a10 + 2as + ¢
k=—o0 k=1 k=1
+ (k+2)&k+20’k —Z(k—2)5;6,20’“—1—26;60”“—1-23;60’“. (611)
k=1 k=3 k=1 k=1

Using this equation the coefficients ¢, and dj can be expressed into the known coefficients Ay and the
other set of unknown coefficients aj and b,. The result is as follows.

co = Ay — 2as, (6.12)
cx=A_} — (k+2)ars2 — b, k=1,2,3,..., (6.13)
dy = A1 — (a1 + @), (6.14)
dy = Ay — To, (6.15)
dy = Ay — g + (k — 2)bg_o, k=3,4,5,.... (6.16)

One half of the unknown coefficients have now been expressed into the other half.

6.1.2 Inner boundary

Along the inner boundary we have ¢y = ao = aexp(if), so that {; = ao~!. In this case

——w/((i?)) = (o = ao. (6.17)
w'(Co
With (6.5) the second term in the boundary condition is
w(CO) (b/(co) — i k&kaka*’“& _ i kgkafko,k+2' (618)
w'(o) k=1 k=1
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This can also be written as

ﬁ ?'(Co) = ara0 + 2a2a° + Z(k + 2)ap 20 T2k

w'(Co) k=1
= (k= 2)bp_sa 20", (6.19)
k=3

The third term in the boundary condition is
$(G0) =T+ Y _amafo P+ dra ko, (6.20)
k=1 =
The complete boundary condition now is, with (6.6),

Bpot + C = agal ot + bea ko™ + Gra0 + 2a20°
> Z Z

k=—o0
+20 + Z(k+2)ak+2a BN (k= 2)be_2a 20"
k=1 k=3
+ZEkakafk —i—ZEka*kak. (6.21)
k=1 k=1

It is perhaps most convenient to solve these equations again for the coefficients ¢ and dg. The result is
co = By + C — 2as02, (6.22)
cr = B_ra ™ — (k + 2)ap 00 — a2k, k=1,2,3,..., (6.23)
dl = Fla - (CLl + 61)012, (624)
d2 = FQO[2 - 52014, (625)
d, = Bra® —apa® + (k — 2)byp_o20a?, k=3,4,5,.... (6.26)

The coeflicients can now be determined successively.

First consider (6.14) and (6.24). It follows from these equations that
Al — (CLl + 61) = Bla - (CLl + 61)012. (627)
Hence, if it assumed that Im(a;) = 0,

Al — O[Bl

a; = 2007 (6.28)
From (6.12) and (6.22) it follows that

Ay —2a3 = By + C — 2a20°. (6.29)
Hence

4 = A‘;(‘lf%;)c (6.30)
From (6.15) and (6.25) it follows that

Ay — az = Baa® — aga®. (6.31)
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Hence

as = /121__70;24& (6.32)
It follows from (6.30) and (6.32) that the value of the constant C' must be
C=A)—By— /121;70;2232 (6.33)
The value of the integration constant C' appears to follow from the analysis.
From (6.13) and (6.23) it follows that
A g — (k+2)apse — by = B_pa™" — (k4 2)ap 20 — bpa™ 2. (6.34)
Hence
1—a M+ (k+2) 1 —-o®)apses=A_r—a "B_j, k=1,2,3,... (6.35)
Furthermore, it follows from (6.16) and (6.26) that
Ap —ap + (k — 2)bp_2 = Bra® — ara®* + (k — 2)by_20>. (6.36)
Hence
—k(1—a )by + (1 = ™)ap 0 = Apyo — "By, k=1,2,3,... (6.37)
The coefficient by can be eliminated from (6.35) and (6.37). This gives
_ k(A —o?)(Ag —aFBg) + (1 — a?*)(Ags2 — a* P Byyo)
2 = (1= a2 ) (1 —a 2F) + k(k + 2)(1 — a2)? ’
k=1,2,3,... (6.38)

All coefficients aj have now been determined. The coefficients by can then be determined from (6.35) or
(6.37). The coeflicients ¢ can then be determined from (6.13) or (6.23), and the coefficients dj, can be
determined from (6.16) or (6.26). The problem has now been solved in a general form.

6.1.3 Example: Ring under constant pressures

As an example we will consider the case of a ring loaded by a uniform pressure p, along its outer boundary
and a uniform pressure p; along its inner boundary. Along the outer boundary we then have

ty + ity = —p2 exp(ib), (6.39)

Because along this boundary the length element is ds = R df it follows that
F = z/(tm +ity) ds = —paRexp(if) = —p2Ro. (6.40)

Comparison with (6.1) shows that all coefficients Ay, are zero, except

Ay = —poR. (6.41)
Along the inner boundary we have

ty + ity = p1exp(ib), (6.42)

Because along this boundary the length element is ds = —aR df it follows that
F = z/(tm +ity) ds = —praRexp(if) = —api Ro. (6.43)
Comparison with (6.2) shows that all coefficients By, are zero, except

Bl = —ale. (644)
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It now follows that all coefficients ay and by, are zero, except

(p2 —a®p)R
=" 6.45
“ 201 — a2) (6.45)
The constant C appears to be zero, from (6.33). The coefficients ¢, are all zero also, and of the coefficients
dj; the only non-zero one is

—p1)a?’R
dy = %. (6.46)
The complex stress functions now are
(p2 —a®p1)R
S A
00 =B h (6.47)
(P2 —p1)a’R 1
Y(C) = ﬁ & (6.48)
Because the conformal mapping function in this case is z = R( it follows that
(p2 — a’p1)
P(z) = —ﬁ 2y (6.49)
_ 2 R2
_ (p2=pi)a” 7 (6.50)

YTy

> .

These expressions are in agreement with the results given by Sokolnikoff (1956), p. 300.
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7. Elastic half plane with circular cavity

In this chapter and the next we will study the problem of an elastic half plane with a circular cavity, see
figure 7.1. The upper boundary of the half plane is assumed to be free of stress, and loading takes place

Y n

Figure 7.1. Conformal transformation

along the boundary of the circular cavity, in the form of a given stress distribution or a given displacement
distribution.

It is assumed that the region in the z-plane can be mapped conformally onto a ring in the (-plane,
bounded by the circles |(| = 1 and |¢| = «, where o < 1. The properties of the mapping function will be
studied in this chapter.

7.1 The inner boundary

The conformal transformation is

. 14¢
= = — 7.1
2= w(() = —ia ¢, (71)
where a is a certain length. The origin in the z-plane is mapped onto ( = —1, and the point at infinity

in the z-plane is mapped onto { = 1, see figure 7.1.

Differentiation of (7.1) with respect to ¢ gives

2ia
Q) =~

(1-¢)?
It will be shown that concentric circles in the (-plane are mapped on circles in the z-plane, and the
relation between the depth of the circle and its radius with the parameter «, which is the radius of the
circle in the {-plane, will be derived.

For a circle with radius « in the {-plane we have

¢ = aexp(i6), (7.3)

where « is a constant, and 6 is a variable. With (7.1) this gives

(7.2)

- 2acsin 6
T 14 a2 —2acosf’
a(l—a?)
14+ a2 —2acosf’

(7.4)

x

(7.5)

y:

It is now postulated that these formulas represent a circle, at depth h, having a radius r. This means
that it is assumed that there exist constants i and r such that

2?4 (y + h)? =12 (7.6)

25



In order to prove this we will demonstrate that 9r?/90 = 0. This is the case if

2
or :2338—”’C+2(y+h)8

il oy _
of of or 0- (7.7)
This means that
Oz /00
h = —UY — . .
Y yj00 (7.8)

It follows from (7.4) that
or (14 a?)2acosf —4a?

b 7.9

a0~ “ (1+a?—2acosf)? ’ (7.9)
and from (7.5) it follows that

dy (1 —a?)2asind

—= = . 7.10

00 a(1+a2—2acos9)2 (7.10)
Substitution of these two results into (7.8) gives, after some algebraic manipulations,

14 a?
h=a——-: 7.11
T2 (7.11)

which is indeed a constant, and which also proves that r is a constant. With (7.6) the corresponding
value of r is found to be

20
a—-.
1—a2

If the covering depth of the circular cavity in the z-plane is denoted by d, see figure 7.1, it follows that

T =

(7.12)

11—«
d= . 1
T (7.13)
The ratio of depth and cover is
h 1+ a?
-—= 7.14
d (1-a)? ( )

If @« — 0 the radius of the circular cavity is practically zero, which indicates a very deep tunnel, or a very
large covering depth. If o — 1 the covering depth is very small. For every value of h/d the corresponding
value of « can be determined from (7.14).

7.2 Multiplication factor

An interesting quantity, that may be needed in elaborating certain specific problems, is the multiplication
factor of the transformation. This can be investigated by noting that

d
dz = 2dc = W' (¢)dc, (7.15)
d¢
Thus it follows that
dz|
%20 _ ). 7.16
= W) (7.16)
From (7.2) it can be derived that in this case
d 2 2
ldz] _ ¢ a , (7.17)

|d¢| 1+ a?—2acosf B 1+a?2—alc+o71)

where o = exp(if)). It may be noted that @ = o~! so that o + o~ ! is always real. Eq. (7.17) permits to
transform an integration path in the z-plane to the (-plane.
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7.3 A displacement boundary condition

A simple boundary condition along the inner boundary in the z-plane is that the normal stress, or the
radial displacement, is constant along this boundary. In terms of the displacement this means

x
x:— _, -1
U Uo (7.18)
h
Uy = —uoy + , (7.19)
r

where uy is the radial displacement, directed inwardly. With (7.4), (7.5) and (7.11) this gives

(1 —a?)sind
o , 7.20
“ T a2~ 2acos (7:20)
2a— (1 2 0
wy = o a— (14 a”)cos (7.21)

14+ a2 —2acos

It may be noted that for o — 0 this reduces to ug + fu, = iug exp(if).

7.4 Fourier series expansion

In the complex variable method as used in this report the boundary values have to be expanded into
Fourier series,

> Agexp(kif), (7.22)
k=—o00
where
1 27
Ap = — f(0) exp(—Fkif) db. (7.23)
27T 0

Some well known integrals (Grébner & Hofreiter, 1961, section 332) are

27 k
cos(kb) 2w
df = k=0,1,2,... 7.24
/0 14+ a2 —2acosf 1—a?’ B (7:24)
sin 0 cos(k0)
dd=0, k=0,1,2,... 7.25
/0 1+ a2 —2acosf ’ R (7.25)
27 2
cos @ cos(kb) 11+«
df = k=1,2,3,... 2
/0 1+ a2 —2acosf T e 23 (7.26)
27
cos 6 cos(kB) 2ra
df = k= 2
/0 1+ a? —2acosf 1—a?’ 0 (7.27)
/Qﬂ sinkd) 4o _0, k=0,1,2 (7.28)
o l+a2—2acosf I '
27
cos 0 sin(k0)
dd=0, k=0,1,2,... 7.29
/0 1+ a2 —2acosf ’ B (7.29)
/Qﬂ sind sin(k6) _jp okt p_123 (7.30)
=T = .
o 1+a%—2acosb ’ R
27
sin 0 sin(k6)
df = k=0. 31
/0 1+ a? —2acosf 0 0 (7:31)
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Using these results it can be shown that the Fourier series expansion of the horizontal displacement wu,,
as given by (7.20), is

Uy = Z Py, exp(ki6), (7.32)

k=—0oc0
where

bl k=1,2,3,...,

Py, = Liug(1 — o?) 0, k=0, (7.33)
—akH k= —1,-2,-3,....

This can also be written as
Uy = —uo(l — a?) Z o*Lsin(k0). (7.34)
k=1

In figure 7.2 the expression (7.20) is compared with its Fourier series expansion (7.34), the dashed line,
taking four terms only, and assuming that o = 0.5. It appears that even for such a small number of

Uz/u()

Figure 7.2. Fourier series for u,, 4 terms

terms the approximation is reasonably good. By taking 10 terms or more, the two expressions become
indistinguishable.

The Fourier series expansion of the vertical displacement u,, as given by (7.21), is

uy= > Qrexp(kif), (7.35)

k=—oc0
where

%(1—042)0/“71, k=1,2,3,...,
Qr = uo —a, k=0, (7.36)
%(I—QQ)OFkJrl, k=-1,-2,-3,....

This can also be written as
Uy = —uga + up(l — a?) Z oF L cos(k0). (7.37)
k=1

In figure 7.3 the expression (7.21) is compared with its Fourier series expansion (7.37), the dashed line,
taking four terms only, and assuming that @ = 0.5. Again it appears that even with four terms only,
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Figure 7.3. Fourier series for u,, 4 terms

the approximation is reasonably good. By taking 10 terms or more, the two expressions become indis-
tinguishable.

In the complex variable method the boundary condition is expressed in terms of the complex variable
Uy + fu,. With (7.34) and (7.37) this is found to be

U +iuy = —iuga + iug(l — o?) i oL exp(ikf). (7.38)
This can also be written as

Uy + iUy = —iuga + fug (1 —a%iakflak, (7.39)
where o = exp(if).

Alternative formulation

The series in (7.39) is a geometrical series, with each term being ao times the previous one. The sum of
the series can easily be determined. The result is

o — 0

Ug + iUy = —iUg

(7.40)

1—ao’

This seems a remarkably simple result.
The form (7.40) can also be established immediately from the boundary condition in its original form
of egs. (7.18) and (7.19), if this is written as

z+1ih

Ug + Uy = —Ug ; (7.41)
T
and z is written as
C1+¢ 14 ao
=- =- . A2
ml—( laT—— (7.42)

The form (7.40) may seem to be inconvenient as a boundary condition because of the factor 1 —ao in the
denominator. It will later be seen, however, that it is convenient to multiply the boundary condition by
precisely this same factor. Therefore it will be found that this form of the boundary condition is actually
very convenient for further elaboration.
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7.5 A stress boundary condition

A simple boundary condition along the cavity boundary in which the stresses are prescribed is the case
of a uniform radial stress ¢. Then

X
ty = t=, 4
; (7.43)

(7.44)

According to (2.90) this must be integrated along the boundary
S z+1ih
r

F=F +iF,= z/ (te + it,)ds = it/ ds. (7.45)

So
Along the boundary of the cavity we may write z + ih = r exp(i3), where r is the constant radius of the
circle and [ is a variable angle. Along that path ds = rdf3, so that

B
F = it/o exp(i8) rdB = trlexp(if) — 1] = t(z +ih — 1), (7.46)

where it has been assumed that the initial point sqg corresponds to g = 0.
Expressed into the value of ( = ao along the boundary in the {-plane the expression (7.46) is found
to be
2itha

F = 1T a?) (1 —a0) [ — 0 +i(1l — ao)]. (7.47)

This is the form of the boundary stress function that will be considered in detail later.
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8. First boundary value problem

In this chapter the problem of an elastic half plane with a circular cavity is investigated, for the case that
along the boundary of the cavity the surface tractions are prescribed.

The complex stress functions ¢(¢) and ¥(¢) are analytic throughout the ring-shaped region in the
¢-plane. It is assumed that they are also single-valued, so that logarithmic singularities can be ignored.
This means that they can be represented by their Laurent series expansions,

$(Q) =ao+ Yy arct+ b, (8.1)
k=1 k=1

Q) =co+ Y e+ diCF, (8.2)
k=1 k=1

These series expansions will converge up to the boundaries || = 1 and |(| = a. The coefficients ay, bg,
¢, and dj must be determined from the boundary conditions.
In general the boundary condition for a given surface traction is given by (3.6),

F(Go) + € = 6(co) + 2 F76T + 9ca), (8.3)

w'(¢o)
where (o is a point on the boundary. Without loss of generality the constant C can be assumed to be
zero along one of the two boundaries. This will be done for the outer boundary.
The transformation function mapping the region in the z-plane onto the interior of a circular ring in
the {-plane is the same function as the mapping function for a half plane onto the unit circle,

1

2= w(() = _m%. (8.4)
The origin in the z-plane is mapped onto ( = —1, and the point at infinity in the z-plane is mapped onto
¢=1.

Differentiation of (8.4) with respect to ¢ gives
2ia
Q) = - . (3.5)
(1-¢)?

On a circle in the ¢-plane we have ¢ = ¢y = po, where o = exp(i6). Then (o = po—'. This gives

5@ 2 20—
8.1 Outer boundary
On the outer boundary the radius p = 1. Then

W(CO) _ %(1 _ 0,72)' (87)

w'(Co)
The derivative of the function ¢(¢) is

¢'(¢) = Y kar" Tt =Y kb (8.8)

k=1 k=1

so that

¢'(Co) =Y _ kago FT =3 kbpot (8.9)

k=1 k=1
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From (8.7) and (8.9) it follows that the second term in the boundary condition is

(%) Fy = LY kot - 1Y ko

(CO k=1 k=1

3> kape P 4+ 3> kbt (8.10)
k=1 k=1

&

~—

The third term in the boundary condition is

(G =20+ o F+ > dpot. (8.11)
k=1

The complete boundary condition now is, assuming that C' = 0 along this boundary,

o0 o0 o0 o0
ag + E aro® + E bro F + % E kapo k1 — % E kbpoFtt
k=1 k=1 k=1 k=1

—% Z kakUikil + %Z kEkO'kil +co + ZEkUik + ZEkUk =0. (812)
k=1 k=1 k=1 k=1
This can also be written as
Zakgk+2bka %Z k+ 1)aki10” —% —1bk 10’
k=1 = k=1 k:2
_% —lak 10 %Zk—l—lkarlO' +CL0+ CL1+ bl
k:2 k=1
+Eo+25k0’7k+zak0'k =0. (813)
k=1 k=1
The coefficients ¢, and dj can be solved from this equation. The result is
Co = —EO — %al — %bl, (814)
ek = —bp + 2(k — Dag—1 — 2(k + 1)ag41, k=1,2,3,..., (8.15)
de = —ar + 2(k — 1)bp_1 — 3(k + 1)bg1, k=1,2,3,..., (8.16)

One half of the unknown coeflicients have now been expressed into the other half. It may be noted that
for kK = 1 the last two expressions each contain a non-existing term, but with a factor 0. If the coefficients
ar, and by can be found, the determination of c; and dy, is explicit and straightforward.

8.2 Inner boundary

On the inner boundary the radius p = a, and (o = ao. Equation (8.6) now gives
w(¢p) _ —ao— (1-22%)+a2—a?)o~t - a2072' (8.17)
W' (Co) 2(1 — ao)
In contrast with the case of the boundary condition at the outer boundary, where the factor representing
the conformal transformation was very simple, see (8.7), this factor appears to be a rather complicated
expression at the inner boundary, especially because of the appearance of the factor (1 — ao), or (1 —¢p),
in the denominator of (8.17). In order to eliminate this difficulty, all the terms in the boundary condition
are multiplied by this factor. It may be noted that this factor is never equal to zero inside the ring in
the (-plane.
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The boundary condition (8.3) is now written as

F* (o) + C(1 = o) = T1(Co) + T2(Co) + T5(o), (8.18)
where
F*(Go) = (1 = Go) F'(Co), (8.19)
T1(Co) = (1 = Co)9(o), (8.20)
T5(Go) = (1 — Co)@ ¢’ (Co), (8.21)
w'(Co)
T3(Go) = (1 = ¢0)v(o)- (8.22)

Each of these terms will be considered separately, before attempting to solve the complete equation.
It is assumed that in the boundary condition (8.3) the function F((p) can be written as

F(¢) = Fao) = Y Bo*, (8.23)
k=—oc0
where the coefficients By are given. The modified boundary function F*((p) is written as
F*(¢o) = F*(ao) = Y Apo*, (8.24)
k=—o0

The coefficients Ay, can easily be calculated from the coefficients By, using the definition (8.19). The
result is

Ak :Bk —Oszfl, k= —00,...,0Q. (825)

8.2.1 Term 1

The first term in the modified boundary condition is
T1(o) = (1 — ag)p(ao) =

=ag + Z(ak —ap_1)aFo® — by + Z(bk —bpy1)a Fok. (8.26)
k=1 k=1

If it is assumed that
bo =0, (8.27)

then eq. (8.26) can also be written as

T1(Go) = a0 + Y _(ar — ap—1)a¥o® + > " (bp — bpar)a Fo k. (8.28)
k=1 k=0

8.2.2 Term 2

The second term in the modified boundary condition is considered as a product of two terms,

T2(¢o) = T21(Co) x T22(Co), (8.29)
where

w(¢o)

w'(Co)

121(¢0) = (1 = Co)

: (8.30)
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and

Ta2(Co) = ¢ (Co)- (8.31)
With (8.17) the first factor of the second term can be written as

2T51(¢y) = —ao — (1 —202) + a(2 —a?)o™! — a0~ 2 (8.32)
The derivative of the function ¢(¢) at ¢ = (o is

0) =Y kaa* P =N ko e R (8.33)
k=1 k=1
so that the second factor of the second term is

T52(¢o) Z kay, aF —kHl Z kgkofkflalﬁl. (8.34)

Multiplication of the two factors (8.32) and (8.34) leads to the following expression for the second term
2T2(<0) = — [(1 — 20[2>51 + 20[252 — 51]
— [01251 + (2 — 012)51 — 252] «

= [Pk + 2)ar12 + (1 — 20%)(k + 1)ak41
k=1

—(2 = a®kay + (k — 1)5,671]0/“0*’“
+Z —2bk 2+(1—20[ )(k—l)gkfl

—(2 = a®)kby + (k + 1)bgy1]a o™, (8.35)
It appears from this expression that there are four levels of coefficients involved in the equation: from
ap—1 t0 apy2, and from by_s to bi11. This is not very encouraging, as it may lead to a rather complicated
system of equations.

8.2.3 Term 3
In order to evaluate the third term it is noted that the value of the function 1({) at { = (p is

$(Co) = co+ Y eratot +> draFoF, (8.36)
so that
$(Co) =T + Y eatoF +> dra o, (8.37)
k=1 -

The third term is the product of this expression and a factor (1 — ao), see eq. (8.22). This gives

T3(Co) = [co — a’e1] — [aQEo - El]ofla
+Z k—Oé CkJrl +Z r— Q dk 1 o’, (838)
k=1

Using the relations (8.14), (8.15) and (8.16) this expression can be rewritten in terms of aj and by. The
result is

2T3(Co) = —[2a0 + @1 + by — 20°by — 20°3,]
—|—[2a2a0 — 2a1 + @%@y + o?by — 252]a
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[—2bk + 2a2bk+1 — (k + 1)Ek+1 + (k — 1)5]@,1

+
NE

e
Il
—

+a?(k+ 2)Tpgo — a2k6k] afa™k

M8

+ [—QCLk + 2a2ak,1 + (k — I)Ek,1 — (k + 1)5k+1

e
U
o

—a®(k — 2)by_o + a’kby ] F o (8.39)
Again it appears that there are four levels of coefficients involved in the equation: from ap_; to ag2,
and from by_o to bg41.
8.2.4 Terms 2 and 3
With (8.35) and (8.39) it follows that the sum of terms 2 and 3 is

T5(Co) + T3(Co) = —ao

—i—Z[(l —a®)kay, — (1 —a®)(k + 1)a@yi1 — by, + b o "
k=0

+) [(1=a?)(k—1)bp—1 — (1 — &®)kby, + a’ax—1 — ax]a "o, (8.40)
k=1

if it is again assumed that by = 0, see (8.27).
It now appears that in this sum of two terms only two levels of coefficients occur in the equation:
from ayr_1 to ax, and from by_1 to b;. Two of the four levels of coefficients appear to have canceled.

8.2.5 Terms 1, 2 and 3
The sum of all three terms is, with (8.28) and (8.40),

T3 (Co) + T2(Co) + T5(Co) =
= [(1 = a®ka, — (1 — a?)(k + 1)ar1
k=0

+(a? —a b1 — (1 — a )by ] oo "

M8

+> [ =a®)(k = 1)bg—1 — (1 — a®)kby

e
Il
—

+(® = a®Mag_1 — (1 — a®)ag]a o (8.41)
It now appears that in the final expression for the sum of all three terms only two levels of coefficients
occur in the equation: from ag_1 to ay, and from by_1 to bg.
8.2.6 The inner boundary condition

According to the modified boundary condition (8.18) the value of the quantity T1+ 72+ T3 — C(1 — ()
must be equal to F*(¢p), which is represented by its Fourier series expansion (8.24). Hence

+oo
T1(Go) + Ta(Co) + T5(Go) — C(1 —ao) = F*(0) = > Ago™. (8.42)

k=—o0
It follows from (8.41) and (8.42) that

(1 —o®ka, — (1 — ) (k + 1)arq1
+@?—a M —(1—a M)y =A_pa™* k=1,2,3,..., (8.43)
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and
(1 —a®)(k—1)b_1 — (1 — a®)kby,
+(a? = a®®)ap_1 — (1 — a®F)ay, = Apa®, k=2,3,4,.... (8.44)

From these equations the coefficients aj and b must be determined. The conditions for the coefficients
of 0% and o' must be considered separately. These conditions are

(1 —a?)a; + (1 — a?)by + C = —A,, (8.45)

(1—a?)by + (1 —a?)a; — Ca? = —A;q, (8.46)
or

(1—a?)a; + (1 —a®)by — Ca? = —Ajq, (8.47)
It follows from (8.45) and (8.47) that

C+Ca?=—Ay + A, (8.48)

which determines the integration constant C.

All the coefficients can now be determined successively, except for the constant ag, which remains
undetermined, which represents an arbitrary rigid body displacements. Of the constants a; and b; only
the combination a; +b; is determined by the conditions (8.45) and (8.47). Its complex conjugate remains
undetermined.

8.2.7 Uniform radial stress problem

In the case of a uniform radial stress at the cavity boundary the boundary function F is, with (7.47),
2itha
F= — (1 — . A
1T a9 —a0) [ — 0o +i(1 — ao)] (8.49)

This means that the modified boundary function F* is, with (8.19),

2ith
F* = %[a—a—ki(l —ao). (8.50)
This means that only the terms of order 0 and 1 are unequal to zero,
2itha .
AO = m (OZ —+ ’L), (851)
2itha .

It now follows from (8.48) that the constant C' is as follows.

2tho
© 1+az (8.53)
It now also follows that
2ith
F+C= e (o — o). (8.54)

1+ a?)(1 - ao)

This equation is given for later reference.
Equation (8.45) now gives

2itha?

1—at’

where a; appears to be undetermined. This seems to be an essential difficulty, because it means that a

non-trivial term in the series expansion of the stress functions, namely a term of the form ¢(¢) = a1, is

undetermined by the boundary conditions. It will appear later that the value of the constant a; can be
determined by requiring that the solution converges at infinity.

(8.55)
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9. Jeffery’s problem

In this chapter the problem of uniform radial stress along the cavity will be further evaluated, in order
to be able to validate the solution, and to obtain numerical values. A partial solution of this problem,
considering the stresses only, has first been given by Jeffery (1920), using bipolar coordinates, see also
Timoshenko & Goodier (1951).

9.1 Calculation of the coefficients

It is assumed that all the coefficients are purely imaginary, because of the symmetry of the problem.
Therefore we write

ar = ipk, (9.1)
br = iqr, (9.2)
Cr = Tk, (9-3)
di = isy. (9.4)

It is assumed that the coefficient py can be determined later, from the condition that the displacement
at infinity is zero.

The relation between the first two coefficients p; and g1 now is, with (8.55),

2

@1 =p1 —th %, (9.5)
but the value of p; remains undetermined at this stage. It is now postulated that a second relation
between p; and g1 can be found by requiring that the series expansions in the function ¢(¢) converge.
Actually, it has been found experimentally that for any arbitrary value of p; the coefficients py and gy
become identical for £ — oo, but in general unequal to zero. This would mean that the series expansions
for the stress functions ¢(¢) and (¢) may still converge for points inside the unit circle, i.e. for |¢| < 1,
but that they will diverge on the circle itself, in particular for ( = 1, which represents the point at infinity.
This suggests that an additional condition can be obtained by requiring that convergence of the series
expansions near infinity is ensured by the condition that the coefficients of the series expansions tend
towards zero for £ — oco. It is not immediately certain that this will be sufficient for convergence, but it
is at least necessary. That this will also be sufficient will appear in the worked examples.

The correct value of p; can be found by assuming two arbitrary starting values (e.g. 0 and 1), calcu-
lating the limiting value of the coefficients, and then determining the correct value by linear interpolation
such that the limiting value of the coefficients for k& — oo is zero.

The remaining coefficients py and ¢ can be determined from the equations (8.43) and (8.44), which
give

(1= a®)(k + Dprsr + (@ — o M) gry1 =
=1-®kpr+(1—-a g, k=1,2,3,.... (9.6)

(1—a?** s — (1 —®)(k + Dgpar =
2 — (1= aDkqe, k=1,2,3,.... (9.7)

= (a

This system of equations can be solved numerically. The form of the system of equations is not very well
suited for such a solution, however, because some of the coefficients are unbounded if ¥ — oco. Therefore
they can better be re-arranged and rewritten as follows.

(1 — a2k+2)pk+1 — (1 — 042)(16 + 1)Qk+1 -
2ot (1— aPkqr, k=1,2,3,.... (9.8)

= (a
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(1= a®)(k+ Do prir — (1= a®)gpp =
=1 -a®)ka®p, — (1 - g, k=1,2,3,.... (9.9)

Written in this form the terms remain finite when & — oo, and the terms on the main diagonal do not
tend towards zero.

The system of equations can now be solved in successive steps, starting from the given values of p;
and q;.

The coefficients ri and s, can be determined using the relations (8.14) — (8.16) and (9.3) and (9.4).
This gives

To =Ppo — 3P1 — 31, (9.10)
e = qr — 5(k + Dpry1 + 5 (k — 1)pr_1, k=1,2,3,..., (9.11)
Sk:pk_%(k+1)qk+l+%(k_1)qkfla k:15253a"" (912)

All the coefficients now are known, so that the solution can be further elaborated.

The uniform radial stress problem

In the particular case considered here, it has been found, by trial and error, that by choosing the second
relation between p; and ¢; in the form

@ = o’py, (9.13)

it follows from the equations (9.6) and (9.7) that po and ¢o are identical to zero. All further coefficients
then are also zero, because the system of equations admits a solution in which all coefficients are equal.
The only non-zero coefficients then are, when they are all expressed into p,

po=—(1+a®)pi, (9.14)
2
p1 = %, (9.15)
@ = o’py, (9.16)
ro = —3(14 a®)p1, (9.17)
r=a’py, (9.18)
o = $P1, (9.19)
$1=p1, (9.20)
so = $a’py. (9.21)
Here the coefficient py has been determined such that the displacement at infinity is zero.
9.2 The stress functions
The stress functions now are
$(C) =ipr[=(1+ %) + C+a?/(], (9-22)
Y(Q) =ipi[=5(1+0%) + ¢+ 3¢ +1/C+ 307/¢7. (9-23)
For the evaluation of the stresses and the displacements the derivatives are also needed. These are
¢'(Q) = ip1[1 — a®/¢?], (9.24)
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¢"(C) = ip1[202/¢7), (9.25)
U'(Q) = ipr[a® + ¢ = 1/¢* = o® /7). (9.26)

In order to be able to verify the boundary conditions the conformal transformation and its derivative are
also needed. These are

1+4¢

z=w(() = —ial — (9.27)

dz P 2ia

d_C:w(O__(l—C)Q' (9.28)
From these equations it follows that

w 1 =

R EeeJ( (9.29)

9.3 Verification of the boundary conditions

The boundary condition on the top surface is that this must be free of stress. In terms of ¢ this boundary
condition is

w(¢
=1 6(0) + 2L + 5 =0, (9.30)
w'(€)
The boundary condition at the boundary of the cavity is that here the radial stress should be ¢. The
appropriate boundary condition is

|a—a:wo+§%$@4WB—F@+a (9.31)

where F'(¢) + C is given by (8.54),

2itha
(1+a?)(1 - ao)

Fl()+C= (a—0). (9.32)

In (9.31) the value of ¢ on the boundary is ( = ao, where o = exp(if), and 6 is the tangential polar
coordinate in the (-plane.

9.3.1 The first boundary condition

Along the boundary |¢| = 1 we may write ¢ = 0 = exp(if), so that { = exp(—if) = 1/0. Eq. (9.29) then
gives

[l=1 : ;u/(:é)) =1(1-07?). (9.33)
This is identical to (8.7). Furthermore we have

IC|=1: ¢(C) = &ip1[-2—20° + 20 + 2a%c7 ], (9.34)

=1 : ¢'(¢) = ipr[-1+a’0?, (9.35)

I¢[=1: :j/((?) ¢'(() = Sip1[-1 - a® + a’0® + 077, (9.36)

ICl=1: () = Lipi[343a*—2a%0"" — 07 — 20 — a%07], (9.37)

It follows from (9.34), (9.36) and (9.37) that the boundary condition (9.30) is indeed satisfied.
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9.3.2 The second boundary condition

Along the boundary || = a we may write ( = ao = aexp(if), so that ( = aexp(—if) = a/o. Eq. (9.29)
then gives
w(¢) 1 1+ao

Kl=a : >0 = _Fl—aa(a_(jV' (9.38)

This is identical to (8.17). Furthermore we have

=0 6(0)="L(a~0)1~a0), (9:39)

=0 () =—ipi(1-07), (9.40)
_ . wO = ipp1+ao0 2 2

=0 290 = B a—oP0 - o) (0.41)

IKl=a : ¥(C) = %(Q—U)[Zﬂ —a? —ao —2a%0 + a?0? 4 ad?. (9.42)

It follows from (9.39), (9.41) and (9.42) that the boundary condition (9.31) is indeed satisfied, provided
that

B 2th
=0 a1 -a)?

(9.43)

This is identical to the value given in (9.15). It may be concluded that the solution, as given by the
equations (9.22) and (9.23) satisfies all the conditions, and thus is the solution of the problem.

9.4 Displacements of the surface

In this section the displacement of the upper surface (y = 0) are determined. It will appear that simple
analytic formulas can be obtained.
The displacements can be determined from the equation

: wl@) 7=
2p(u +iv) = k(¢) — ===¢'(¢) — ¥((), (9.44)
w'(€)
where kK = 3 — 4v. To determine the displacements of the upper boundary y = 0 from equation (9.44)
the value of ¢ must be taken along the unit circle, |(| = 1. Because along this boundary the condition
(9.30) is satisfied, it follows that the displacements along this boundary may also be determined from the
relation

I[K|=1: 2u(u+iv) = (k+ 1)¢((), (9.45)

which is of a somewhat simpler form than (9.44).
With (9.34) it follows that

ICl=1: 2u(u+iv) = (k+ ipi[—(1 + a2) + (o + a?c71)]. (9.46)
If we write 0 = cos 0 + ¢sin 6 it follows that

ICl=1 : 2uu/p1 = —(xk +1)(1 — a?)sin®, (9.47)

Il =1 : 2uv/p1 = —(k +1)(1+ a?)(1 — cosf). (9.48)
On the boundary |{] = 1 we have, from (9.27),

sin 0
q T=ar (9-49)
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From this equation it can be derived that

2z /a

nf=-—"—— .
sin Ty (9.50)
1—cosf = 2 (9.51)
SUTIT z?/a?’ '
Thus the displacements of the surface are
2uu o 2z/a
=0: —=-— 1)(1- —_— 9.52
y T —(r 1) (1= 0f) s, (9.5)
2uv 9
=0: —=-— (1 — 9.53
y 2L (1) (14 0) (9.53)
where p; is given by (9.15). The formulas may also be written as
2uu (2a)? x/a
=0: —=-4(1—- 9.54
4 th ( V)l—oz‘l 1+ 22/a?’ (9:54)
2uv (2a)? 1
=0: — =-4(1- 9.55
4 th (1-v) (1 —-a2)21+22/a?’ (9:55)
where « is determined by the ratio
h 1+a?
P (9.56)
(h being the depth of the center of the cavity, and r its radius), and where a is given by
a 1-a?
hoTxal (9:57)

When o — 0 the radius of the cavity is very small. When o — 1 the radius of the cavity is very large.
The total volume below the settlement trough can be obtained by integrating the vertical displacement
of the surface,

+oo
AV = —/ vdz. (9.58)
With (9.55) this gives, after some elementary substitutions,
2uAVy 14 a?
7TT2t = 4(1 — I/) m (959)

9.5 Displacements of the cavity boundary

Another interesting quantity is the displacement of the boundary of the cavity. This can be determined
from the equation

&/—_— 9.60
w/(<)¢ (€) = ¥(Q), (9.60)

where kK = 3 — 4v, and now || = a. Because along this boundary the condition (9.31) is satisfied, it
follows that the displacements along this boundary can simply be determined from

[Cl=1: 2pu(u+iv) = (r+1)6(C) = F(¢) = C, (9.61)

where F is given by one of the many forms used before, the most simple one being (7.46),

2p1(u + iv) = k(C) —

F=t(z+ih—r), (9.62)

41



and C'is given by (8.53),

C =tr. (9.63)
With (9.34) it now follows that
ICl=a : 2u(u+iv) = —(k + 1)ipi[l + a® — 2accos 0] — t(z + ih). (9.64)
Along the boundary || = @ we have
1— 2
1+a? - 2acosf = ——— (9.65)
y/a
see (7.5). Thus, after separation into real and imaginary parts, and using the expression (9.15) for py,
2uu T
(=a: - =7, (9.66)
2uv y+h 202  h
=a: —=—-"—+41-v) —5= —. 9.67
Cl=a s 20— Tl i) s (967
The radial displacement of the cavity boundary can be obtained by a simple transformation of coordinates,
h
ur = uZ 420 (9.68)
r r
After some elementary algebra this gives, with (9.66) and (9.67),
2, h
C=a : P g yoa—p)tY (9.69)
The tangential displacement is
h
Uy = ¥ + 1ol (9.70)
r r
This gives, with (9.66) and (9.67),
2
iCl=a : E2_oq ) I, (9.71)

Y
Again the simplicity of the formulas may be noted.
The total volume produced at the cavity can be obtained by integrating the radial displacement along
the cavity boundary,

27
AV, = —/ up 1 dp, (9.72)
0
where [ is the angle around the cavity. With (9.69) this gives
2uAVy T hty
=27 —2(1 - —=dg. .
o m=2(1-v) /0 ;9 (9.73)
At the boundary of the cavity we have
y=—h+rsing. (9.74)
so that the integral can also be written as
2uA Vs T rsin
=2r+2(1 - ——dg. 9.75
r2t ™+ 2 1/)/0 h—rsing b (975)
After elaboration of this integral the result is
2uAVy 202
=24+4(1-v)——. .
wrt +4( V)l — a2 (9.76)

For an incompressible material (v = 0.5) the two volumes AV; and AV, are equal, see (9.59) and (9.76).
If v # 0.5 the volume change at the surface is larger than the volume change at the cavity boundary,
provided that o < 1, which is always so. For a very small cavity (¢ — 0) the volume below the settlement
trough is a factor 2(1 — v) times as large as the volume produced at the cavity. For a very large cavity
(a — 1) the two volumes are practically equal, for all values of v.
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9.6 Stresses at the cavity boundary

At the boundary of the cavity the radial normal stress and the shear stress are given (o, =t and o+ = 0).
The tangential normal stress o4 can be determined by calculating the invariant o, 4+ 0yy. This quantity
is given by eq. (2.93),

oz + 0yy = 2{¢'(2) + ¢/(2)} = 4Re{¢'(2)}, (9.77)
where ¢'(z) = d¢(z)/dz. This can be calculated from the relation

o(2) = iigg (9.78)
From (9.24) and (9.28) it follows that

¢’(<)7_p_1 —a2/¢2)(1 = )2

g =B —at/)a -0 (9.79)

At the boundary of the cavity we have ( = ao or ( = aexp(if). This gives, after some elementary
algebraic operations,

Re{¢/(2)} = _% sin2 (1 — o). (9.80)
The coordinates in the z-plane are given by (7.4) and (7.5),
2aasin
= 9.81
YT 11 a2 —2ac0s6’ (9:81)
a(l —a?)
=— . .82
1+ a?—2acosf (9:82)
From these equations it follows that
a2
Gng— 1 (9.83)
20y

Using this expression, the relations between the geometrical parameters h, a and «, and the expression
(9.15) for p1, the stress invariant becomes

Tuz + Oyy — o™ (9.84)

t Y
At the cavity surface the radial stress o, =t, so that there
2
S (9.85)
t Y

This is a compressive stress, with its smallest value (-1) at the upper and lower points of the cavity,
and its largest value at the points where the angle with the vertical is the largest. The simplicity of the
formula (9.85) is remarkable.
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10. Validation of the solution

In order to validate the solution it has been implemented in a computer program (Jeffery.exe). This
program has 3 options: the presentation of numerical data on the screen, the presentation of results in
graphical form on the screen and in a printer file, and a number of validations.

The program works interactively, on the basis of values of Poisson’s ratio v and the ratio of the radius
of the cavity to its depth (r/h), which must be entered by the user.

The program first calculates the coeflicients of the series expansions (taking a maximum of 20 terms),
and then calculates stresses and displacements along the boundaries, and presents these on the screen,
in the form of tables. The program uses only 3 terms for these calculations, as it has been found in the
previous chapter that only 3 terms are unequal to zero. It prints the first 20 coefficients, to demonstrate
that all coefficients beyond the third one are indeed equal to zero.

10.1 Numerical results

Numerical results of all the displacements and stresses are presented for values of x and y to be entered
by the user. The value of y must be negative because the half plane considered is y < 0. The program
stops if a positive value of y is entered, or if the point is located inside the tunnel.

10.2 Graphical presentation

The graphical presentation of results consists of contour lines of various variables (displacements or
stresses), on the screen and in a datafile. This datafile is in Bitmap format, having the extension *.BMP,
or in PiCTeX format, having the extension *. TEX. Using appropriate software this datafile can be plotted.

10.3 Validations

The first validation of the program is the boundary condition at the cavity boundary. The stresses there
are calculated, and it is found that the radial stress is indeed 1, and that the shear stress is indeed 0
(both up to six significant numbers). The same is true for the surface tractions along the horizontal
upper boundary. It is found that along this boundary o,y = 0y, = 0. The lateral stress o, is not found
to be zero, but of course this is not necessary.

By considering points in the complex (-plane very close to ¢ = 1 it is possible to calculate the
displacements and the stresses near infinity. These appear to be zero, as they should be.

The program also shows the displacements along the ground surface, and along the cavity boundary.
In both cases the displacements are calculated in two ways: using the series expansion, and using the
closed form formulas. The results appear to be identical, which can be seen as a confirmation of the
computations.

An interesting quantity is the total volume of the settlement trough. This can be calculated by
integrating the vertical displacements along the surface

+oo
AV = —/ vdz, (10.1)
where the displacements should be determined along the upper boundary y = 0. This integral can be
transformed into an integral in the (-plane, along the unit circle, taking into account the scale factor
|’ (€)], see (7.16). In this case this factor appears to be

, a 1—a? h
= = : 10.2
[ (C)] 1—cosf® 1+a?1—-cosb (10-2)
Thus the integral can be evaluated as
1—a? T
AV = h Y df. 10.
v 1+ a? /0 1 —cosd (10:3)
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This integral is calculated numerically in the program Jeffery, using Simpson’s integration formula, and
a subdivision of the total interval into 720 equal parts. The result is compared with the closed form
solution (9.59) and with the volume produced at the cavity boundary, as given by (9.76). The relative
error is smaller than 1 %.

10.4 Example

The displacements of the entire field, for v = 0.5 and r/h = 0.5, are shown in figure 10.1. In figure 10.2

—3 —2 -1 1 2 3

Jeffery : v =0.5,7/h =0.5.

Figure 10.1. Deformations of rectangular mesh.

the displacements are shown for v = 0.0 and r/h = 0.5. The results for v = 0.5 can be interpreted as the

-3 —2 -1 0 1 2 3

Jeffery : v=10,r/h = 0.5.
Figure 10.2. Deformations of rectangular mesh.

initial (undrained) displacements of a consolidating poro-elastic medium. For a smaller (drained) value
of v the displacements are found to increase, as could be expected.
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As a further example of the results of the calculations the deformation of the cavity boundary is shown
in figure 10.3, in the form of an apparent spring constant (ratio of radial stress and radial displacement)

Figure 10.3. Springs for constant stress; r/h = 0.5

for r/h = 0.5 and two values of Poisson’s ratio, ¥ = 0.5 and v = 0.0. It may be noted that if r/h = 0.5
the ratio of the cover of tunnel to its diameter is d/D = 0.5. In this case of a rather shallow tunnel, with
a small covering depth, the tunnel appears to be so close to the upper surface that the spring constant
above the tunnel is considerably smaller than the one below it. It may be noted that the horizontal line
above the graph indicates the location of the upper surface, if the fully drawn inner circle is considered
as the radius of the tunnel.

The figure indicates that during consolidation the spring constant at the bottom increases, so that
during consolidation the vertical displacement of the bottom will decrease. At the top of the cavity
the spring constant decreases, so that the displacement at the top will increase. These results are in
agreement, with those shown in the figures 10.2 and 10.1.

Figure 10.4 shows the values of the apparent spring constant for »/h = 0.3333 and two values of
Poisson’s ratio. In this case the ratio of cover to diameter is d/D = 1.0, indicating that the covering

Figure 10.4. Springs for constant stress; r/h = 0.3333

depth of soil above the tunnel is equal to the diameter of the tunnel.
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Figure 10.5 shows the values of the apparent spring constant for /h = 0.25 and two values of Poisson’s
ratio. In this case the ratio of cover to diameter is d/D = 1.5. It appears that in this case of a rather

Figure 10.5. Springs for constant stress; r/h = 0.25

deep tunnel, with a relatively large cover, the distribution of the springs constants is almost uniform.
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11. Second boundary value problem

In this chapter the problem of an elastic half plane with a circular cavity is investigated, for the case that
along the boundary of the cavity the displacements are prescribed.
The complex stress functions ¢(¢) and ({) are again represented by their Laurent series expansions,

$(Q) =ao+ Y arcF+ ) b7, (11.1)
k=1 k=1

Q) =co+ Y e+ diCF, (11.2)
k=1 k=1

These series expansions will converge up to the boundaries || = 1 and |(| = a. The coefficients ay, bg,
¢, and dj must be determined from the boundary conditions.

11.1 Outer boundary

The boundary condition along the outer boundary (|¢| = 1) is again that it is free of stress, as in the
previous chapter. This means that the coefficients ¢, and di can again be expressed into ax and by by
the relations (8.14) — (8.16). These relations are

00:—60—%@—%()1, (113)
Ck:_Ek_%(k+1)ak+l+%(k_1)ak*1’ k:1’2’3""’ (114)
dy =~ + (k= Dby — 2k + Dbiys,  k=1,2,3,..., (11.5)

One half of the unknown coeflicients have now been expressed into the other half. It may be noted that
for k = 1 the last two expressions each contain a non-existing term, but with a factor 0. If the coefficients
ar, and by can be found, the determination of c; and dy, is explicit and straightforward.

11.2 Inner boundary

At the inner boundary the displacements are supposed to be prescribed. The appropriate form of the
boundary condition is given by (2.95),

G = 2pu(uz +iuy) = K9(2) — 2 (2) — (2), (11.6)

where for plane strain

A+ 3
= ————=3—4u. 11.
" A p 8- dv (11.7)

and for plane stress

__BA+b6p 3-v
3N +2n 14

(11.8)

Compared to the boundary condition for the surface tractions, the only differences are the factor « in
the first term, and the sign of the second and third terms. This means that the derivation can be copied
with small modifications from the previous chapters. Again all terms are multiplied by a factor (1 — ao),
so that the modified boundary condition is, by analogy with (8.18),

G'(Co) = kT1(Co) — T2(Co) — T3(Co), (11.9)

where

G'(Co) = (1 = )G (Co) = 2u(1 — ao)(uy +iuy), (11.10)
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and, just as in the previous chapter,

T1(Go) = (1 = Go)&(Co), (11.11)
T3(Go) = (1 = Co) o) ¢’ (Co), (11.12)
w'(Co)
T5(o) = (1= ¢0)¢b(Go)- (11.13)
The three terms have been elaborated in the previous chapter. The result for the term T} is, from (8.28),
T1(Go) = ao + Y _(ar — ar—1)a¥o® + > " (by — bpyr)a FoF. (11.14)
k=1 k=0

The sum of terms T and T5 is, from (8.40),
T5(¢o) + T5(Co) = —ao

—i—Z[(l —aAka, — (1 —a®)(k + 1)apy — by + a2bk+1]akafk
k=0

+) [(1—a®)(k—1)bg_1 — (1 — &*)kby + a*ax_1 — ak]ofkak, (11.15)
k=1

where it has been assumed that by = 0, see (8.27).

11.2.1 Terms 1, 2 and 3
The right hand side of the expression (11.9) now is, with (11.14) and (11.15),

xT1(Co) — T2(C0) —T5(¢0) = ao(k + 1)

+Z (1 — o®)kag + (1 — o) (k + 1)aps1

—(® 4 k" Vo + (1 + /Qof%)bk]aka*k

+Z (1—a®)(k — D)bg_1 + (1 — a?)kby,
—(a® + ka®)ap_1 + (1 + Aan)ak]afkak. (11.16)

Again it appears that in this expression only two levels of coefficients occur in each equation: k& — 1 and
korkandk+ 1.

11.2.2 The boundary condition for the ground loss problem

According to the modified boundary condition (11.9) the value of the expression (11.16) must be equal
to G'(p). The precise form of this condition depends upon the nature of the prescribed displacements.
For the case of the ground loss problem we have, from (7.40) and (11.10),

G'(0) = —2ipug(a — o), (11.17)

which shows that there are only two non-zero terms, for the powers ¢ and o!.
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k

The coefficient of the powers ¢~ must be zero, for £ =1,2,3,.... Hence

(1 —o®kay — (1 — ) (k + 1)arq1
+(@? + ka Vo — (1 + ka2 )b =0, k=1,2,3,.... (11.18)

Furthermore, the coefficient of the powers o*

(1 —a®)(k—1)b_1 — (1 — a®)kby,
+(@? + ka®Mag_1 — (1 + ka*F)ap =0, k=2,3,4,.... (11.19)

must be zero, for k = 2,3,4,.... This gives

If in this expression k is replaced by k£ + 1, it can also be written as
(1 —a?)kby — (1 —a®)(k + Dbpy1
+(@® + k) ay — (1 + v )ap 1 =0, k=1,2,3,.... (11.20)

Using the two equations (11.18) and (11.20) the two coefficients ax41 and b1 can be expressed into ay
and by, starting from k£ = 1.

For the evaluation of the coefficients the equations can perhaps better be rewritten as follows.

(1 —a®)(k+ Dagsr — (0 + ka2 by =
=(1-aHkap — (1 +ra "My, k=1,2,3,.... (11.21)

1+ ke ap 1+ (1 —®)(k+ 1)bpyr =
= (a? + ko ap + (1 — aPkby, k=1,2,3,.... (11.22)

From these two equations the coeflicients can be determined recursively.
The starting values, a; and by, may be determined from the coefficients of the powers ¢® and ¢'. This
gives

(1 —a?)a; — (k + a?)by = —2ipuga — (K + 1)ao, (11.23)
(1 —a®)by + (1 + ka?)ar = 2ipuga + (k + 1)a2ag. (11.24)

The coefficient ag is still undetermined in this stage. It represents a rigid body displacement, which
may be related to the displacement at infinity. It is assumed that its value is to be determined from the
condition that the coefficients in the Laurent series tend towards zero for large values of k. This condition
may mean that the stresses are supposed to vanish at infinity.

It is assumed, on the basis of a consideration of symmetry, that all coefficients are purely imaginary,
so that taking the complex conjugate corresponds to multiplication by -1.

The solution of the system of two equations is

2ipugo
= 11.25
ax 1+ (- DaZ 1 o + ao, ( )
2ipuoa’
b1 + ap. (11.26)

- 1+ (k—1)a?+a*

Thus the first two coefficients have been determined. The other coefficients can next be calculated
successively.
It may be noted that the system of equations formally admits a uniform solution

ar =by =ag, k=1,2,3,.... (11.27)

This solution does not converge in the ring in the ¢-plane. The first series converges inside the unit circle,
and is then equal to ag/(1 — ¢). The second series converges outside the unit circle, and is then equal to

—ao/(1 = ).
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12. Elaboration of the solution

In this chapter the ground loss problem will be further evaluated, in order to be able to validate the
solution, and to obtain numerical values.

12.1 Calculation of the coefficients

It is assumed that all the coefficients are purely imaginary, because of the symmetry of the problem.
Therefore we will write

ax = 2ipugpk, (12.1)
b = 2ipuoq, (12.2)
cr = 2ipugry, (12.3)
di, = 2ipugS. (12.4)

It is assumed that the coefficient py can be determined later. For the moment it is left as a parameter.
The first two coefficients p; and ¢; now are, with (11.25) and (11.26),

(0%
= 12.
P1 p0+1+(ﬂ_1)a2+a45 ( 5)
3
(0%
1 = po + (12.6)

14+ (k—1)a2 +at’

The remaining coefficients py and gi have to be determined from the equations (11.21) and (11.22), which
give
(1= a®)(k+ Dprs1 + (@2 + ko™ 2" =
=1 —aDkpr + 1+ ra"F)q, k=1,2,3,.... (12.7)

(14 ra®)prga = (1= ®)(k + 1)gr1 =
= (a* + ko p — (1= PDkqr, k=1,2,3,.... (12.8)

This system of equations can best be solved numerically. The form of the system of equations is not very
well suited for such a solution, however, because some of the coefficients are unbounded if £ — oo, noting
that a < 1. Therefore they can better be re-arranged and rewritten as follows,

(14 kP )pr — (1= a?)(k + 1)gryr =
= (@® + ko — (1 — aDkqe, k=1,2,3,.... (12.9)

(1—a?)(k+ Dok prir + (k+a?* ) gy =
=(1-a®)ka®pp + (8 + ) g, k=1,2,3,.... (12.10)

Written in this form the terms remain finite when & — oo, and the terms on the main diagonal do not
tend towards zero.

The system of equations can now be solved in successive steps, starting from an assumed value of py.
It is postulated that the value of py must be determined from the condition that for very large values of
k the coefficients pp must tend towards zero. Because all the coefficients depend linearly upon pg this
coefficient can now easily be determined by first assuming pg = 0, calculating the last term p,,, then
assuming pp = 1, again calculating p,, and then finally determining the correct value of py by linear
interpolation. It has been found that this works satisfactorily, provided that the number of terms (n) is
large enough.
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The coefficients r and si can be determined using the relations (11.3) — (11.5) and (12.3) and (12.4).
This gives

7o =Ppo — 5P1 — 341, (12.11)
Tk:qk_%(k+1)pk+l+%(k_1)pkfla k:15253a"'a (1212)
sk =1k — 3(k+ 1)qr1 + 3(k — 1)ge—1, E=1,2,3,.... (12.13)

All the coefficients now are known, so that the solution can be further elaborated.

12.2 The stress functions

The stress functions are, from (11.1) and (11.2),

$(Q) =ao+ Yy arct+ b, (12.14)
k=1 k=1

Q) =co+ Y et + > diCF, (12.15)
k=1 k=1

With (12.1) — (12.4) this can be rewritten as
;b(—C):ipoJrinkaJriquC*k, (12.16)
#o k=1 k=1
Zg—il—iro—l-iZTka—i-iZsk(k, (12.17)

k=1 k=1

In general one may write ¢ = pexp(if). Separation into real and imaginary parts then gives

Lez{(b(o} = - Zpkpk sin(k6) + Z qrp” " sin(k6), (12.18)
Huo 1 k=1

7Im2{¢(0} =po + Zpkpk cos(k6) + Z qep " cos(kh), (12.19)
Huo b1 =1

Re{g(Q)} = - i rept sin(k6) + i spp” * sin(k6), (12.20)
20 Pt 1

Im{‘/’(()} =ro+ i Tkpk COS(IC@) 4 i Skpik COS(ICG), (1221)
20 et —1

For the evaluation of the stresses and the displacements the derivatives are also needed. These are

¢'(Q) = ark¢* = k¢, (12.22)
k=1 k=1

¢"(Q) =D ark(k —1)¢F 2+ bek(k+1)¢ 72, (12.23)
k=2 k=1

W(Q) =Y erk¢FTt = dpk¢TF (12.24)
k=1 k=1
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Written in terms of the dimensionless coefficients these formulas are

2'u—u_lkz1 kck 1—’LZle€<kl

(b”(() _ Zipkk(k _ 1)<k*2 +Zi qkk(k =+ 1)(*’672,

2po k=2 k=1
VO _ v -1\ —k—1
Spg zZrka —zZska

The real and imaginary parts of these functions are

Re{¢'(O)} k—1
2,uu0 Zp kp®~ " sin[(k — 1)6]

—qukp L sin[(k + 1)6],

Im{ @'(¢C b1
k 0
L }jp o cosl(k — 1)6]

—qukp F=L cos[(k + 1)6],

Re{¢"(O} _ Z prk(k — 1)p" 2 sin[(k — 2)0]

2po k=2

+> " qrk(k + 1)p " sin[(k + 2)6),
k=1

Imgi/;o Zpkk —1)p* 2 cos[(k — 2)6]
+ Z ark(k 4+ 1)p %2 cos[(k + 2)8],

k=1

LTI S

2pug —
—Zskkp F=Lsin[(k + 1)6],
In{y'(O)} K1
o kZ:lrkkp cos[(k — 1)6]

—Zskkp F=Lcos[(k + 1)6],

This completes the calculation of the stress functions and their derivatives with respect to (.
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12.3 The coordinates

In order to verify and determine the stresses and displacements, the location in the (-plane, as defined
by p and 6, must be transformed into the z-plane. This can be done by the conformal transformation
(7.1)

1
2= w(C) = —ia 1S, (12.34)
1-¢
where «a is a given length, which is related to the depth h of the tunnel by the relation (7.11)
14 a?
h=a——. 12.
T2 (12.35)

Elimination of a from these two relations gives the conformal transformation in terms of the depth A,

z 1-a?21+¢

- =— e 12.36

T 1t1a21-¢ (12.36)
The real and imaginary parts of this expression are, with ¢ = pexp(i6),

r 1-a? 2psinf

- = 12.

h 1+4+a?21+p%—2pcosh’ (12.37)

y__l-o L-p? (12.38)

h ™ 1+4a?1+p%—2pcos’

This enables to determine x and y. The parameter h is used as a scaling factor for all quantities in the
z-plane. Because all the coefficients appear to be proportional to the displacement uy of the cavity, all
the displacements are expressed in terms of u,/ug and wu,/ug. The coordinates, however, are expressed
as x/h and y/h. The stresses are expressed in terms of 2uug/h.

12.4 Derivatives with respect to z

In the expressions for the displacements and the stresses the derivatives with respect to z appear. Their
relation with the derivatives with respect to ¢ can be derived as follows.
The chain rule of differentiation gives

o _dfdz_ oY

/

i dC_w(O e (12.39)
Differentiating once more gives

d*f df d*z  d*f ;dzN\2 . . df yooag A2 f

e _ Y e 8J (BN < — . 124

Az~ dz dc2 ' 422 (d() WO gz T IWOF 53 (12.40)
From these equations it follows that

df 1 df

- = — 12.41

dz  W'(¢) d¢’ ( )

d? 1 d? " d

ffi_f_wi(o_f_ (12.42)

dz2  W(Q A2 W(Q)]2 d2

Thus the derivatives with respect to z can be obtained from those with respect to ¢ by algebraic operations
involving the derivatives of the mapping function.
The mapping functions is, with (12.34)
1+¢

z=w(() = —ial — (12.43)
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From this it follows that

1 7 9
Wi = 20 = %(1 —Q)*, (12.44)
and
_WwiQ) i
Wy = W (OF ~ a(l q). (12.45)

These factors can easily be separated into real and imaginary parts, so that multiplication by them can
easily be performed. In the computations care has to be taken that all quantities are correctly expressed
in terms of the length parameter h, rather than a. This requires multiplication by a constant factor, see
(12.35).
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13. Validation of the solution

In order to validate the solution it has been implemented in a computer program (GroundLoss). This
program has 3 options: the presentation of numerical data on the screen, the presentation of results in
graphical form on the screen and in an HPGL file, and a number of validations.

The program works interactively, on the basis of values of Poisson’s ratio v and the ratio of the radius
of the cavity to its depth (r/h), which must be entered by the user.

The program first calculates the coefficients of the series expansions (taking a maximum of nn terms),
and then calculates stresses and displacements along the boundaries, and presents them on the screen,
in the form of tables. This enables to verify whether the boundary conditions are indeed satisfied. In
the program the value of nn has been taken as 10000. This is usually much too large for sufficient
convergence.

A special problem is the determination of the constant ag, which is not explicitly determined by the
two boundary conditions. It has been found that when an arbitrary value of ag is used as a starting value,
all the coefficients py and g become equal (and unequal to zero) for large values of k. This suggests to
determine the precise value of ag such that these coefficients tend towards zero for k — co. This appears
to work well. The actual procedure used is to first assume ag = 0, calculate the last coefficient g, repeat
the calculations with ay = 1, again calculate the last coefficient q;,,, and then determine the value of ag
by linear interpolation, such that g, = 0. Because of the linearity of the system this should work well,
as indeed it appears to do.

A numerical difficulty may arise in the computations because some of the terms require the calculation
of terms of the type k(k + 1)a~*qy, where o < 1 and k may be very large. A small error in the actual
coefficient gi, even when it is very close to zero, may then lead to a large error in the value of the term
itself, because k(k + 1)a~* is so very large. In order to eliminate this difficulty all the series have been
cut off beyond the term for which the coefficient gy, is smaller than 10~4. For a very small cavity this is
found to mean that only a few terms are needed; for a very large cavity it is found that several hundreds
of terms have to be taken into account. This is determined in the program.

13.1 Numerical results

Numerical results of all the displacements and stresses are presented for values of x and y to be entered
by the user. The value of y must be negative because the half plane considered is y < 0. The program
stops if a positive value of y is entered, or if the point is located inside the tunnel.

13.2 Graphical presentation

The graphical presentation of results consists of contour lines of various variables (displacements or
stresses), on the screen and in a datafile. This datafile is in HPGL format, having the extension *.PLT.
Using appropriate software this datafile can be plotted.

13.3 Validations

The first validation of the program is the boundary condition at the cavity boundary. The displacements
there are calculated, and it is found that the radial displacement is indeed -1, and that the tangential
displacement is indeed 0 (both up to six significant numbers). The same is true for the surface tractions
along the horizontal upper boundary. It is found that along this boundary oy, = oy, = 0. The lateral
stress 0, is not found to be zero, but of course this is not necessary.

By considering points in the complex (-plane very close to ¢ = 1 it is possible to calculate the stresses
near infinity. These appear to be zero, as they should be.

In the same way, by taking ( = 1 + ¢, with |e] < 1, it is possible to calculate the displacements
near infinity. It is found that the horizontal displacement is zero, but that the vertical displacement is
unequal to zero. Although this may be somewhat unexpected, it seems to be very well possible, because
of the conditions that the displacements at the cavity boundary are rigidly imposed, and the stresses at
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infinity have been assumed to vanish. It has been verified that this displacement at infinity is uniform, by
checking the displacements at a great number of points, for various complex values of €. It appears that a
contraction of the cavity (a positive ground loss in tunnel engineering) leads to an upward displacement at
infinity. Of course a rigid body displacement of the entire half plane, including the cavity, can take place
without inducing any stresses. Thus the displacement at infinity can be made equal to zero by subtracting
a constant from all displacements. This means that the cavity itself will also undergo this rigid body
displacement. It can be concluded that a contracting cavity will undergo a downward displacement, with
respect to the points at infinity.

The program GroundLoss also shows the stresses along the cavity boundary. It appears that the
radial stresses are not uniformly distributed, as they are in an infinite medium, or if »/h — 0, but that
the radial stress is larger than average near the bottom, and smaller than average near the top of the
tunnel. This does not mean that there is a resulting force, however, because this is also determined by
the shear stresses. Actually, the validating part of the program GroundLoss also calculates the resulting
force of the surface tractions along the cavity boundary, by numerical integration. This resulting force is
indeed found to be zero.

An interesting quantity is the total volume of the settlement trough. This can be calculated by
integrating the vertical displacements along the surface

+oo
AV = —/ vdx, (13.1)
where the displacements should be determined along the upper boundary y = 0. This integral can be
transformed into an integral in the (-plane, along the unit circle, taking into account the scale factor
|’ (€)], see (7.16). In this case this factor appears to be

, a 1—a? h
= = : 13.2
' (C)] 1—cosf® 1+a?1—-cosb (13.2)
Thus the integral can be evaluated as
1—a? m v
AV =———h —df. 13.
v 1+ a? /0 1 —cosd (13:3)

This integral is calculated numerically in the program GroundLoss, using Simpson’s integration formula,
and a subdivision of the total interval into 1000 equal parts.
The result may be compared with the total ground loss at the circumference of the cavity,

AL@::Zwruozz4whuqu?E§. (13.4)
It seems natural to assume that for an incompressible material (i.e. for v = 0.5) these two values must
be equal. This is indeed obtained by running the program, with a relative error smaller than 1 %.
For smaller values of Poisson’s ratio it appears that the total volume below the settlement trough is
larger than the total ground loss. This property is also predicted by the approximate method of Sagaseta
(1987), which was generalized by Verruijt & Booker (1996). This approximate method gives

AV =2(1 — v)AVj. (13.5)

The calculations using the program GroundLoss do not confirm this result. Actually the ratio AV/AV,
appears to be smaller than 2(1 — v) in the exact solution. Only for very small tunnels it is found that
the results of the approximate solution and the exact solution are practically identical, for all values of
Poisson’s ratio.
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13.4 Examples

Some examples of the results of the calculations are shown below, for instance the deformations of the
mesh, see figures 13.1 and 13.2. These two figures show the displacements of the tunnel as a whole for
v = 0.5 and v = 0.0. It can be seen from the figures that the vertical displacement of the surface

=3 =2 =l 0 1 2. 3

T

GroundLoss : v = 0.5,r/h = 0.5.

Figure 13.1. Deformations of rectangular mesh.

I |

GroundLoss : v =0,r/h = 0.5.

Figure 13.2. Deformations of rectangular mesh.

increases when v decreases from 0.5 to 0.0, as may occur during consolidation of a porous elastic material.
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r/h

Figure 13.3. Vertical displacement of tunnel

Figure 13.3 shows the average vertical displacement of the tunnel as a whole, as a function of v and
r/h. It appears that for small values of r/h the displacement of the tunnel is practically zero. This
case corresponds to the case of a tunnel in an infinite medium, in which there is indeed no average
displacement. For larger values of r/h (or, in other words, tunnels closer to the soil surface) there is a
marked vertical displacement of the tunnel. Its value is negative, indicating a downward displacement.
For certain combinations of v and r/h the displacement may even be larger than twice the imposed radial
displacement.

Figure 13.4 shows the vertical displacement of the bottom of the tunnel. This displacement is usually
upward, but because of the average downward displacement of the tunnel, the displacement of the bottom
is always smaller than the value ug. For large values of r/h the displacement may even be negative, i.e.
downward. It may be noted that this figure is actually identical to figure 13.3, because the displacement
of the bottom is equal to the average displacement of the tunnel plus the constant value ug, the imposed
radial displacement.

Figure 13.5 shows the vertical displacement of the top of the tunnel. This displacement is equal to
the average displacement of the tunnel, shown in figure 13.3, minus the constant value wg. This is is
indicated by the fact that the figures 13.3 and 13.5 differ only in the vertical scale.

Figure 13.6 shows the vertical displacement of the origin of the coordinate system, the point x = 0,
y = 0. This is the point of the soil surface directly above the tunnel. This displacement is the deepest
point of the settlement trough at the soil surface.
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v/ U

r/h

Figure 13.4. Vertical displacement of bottom

r/h

Figure 13.5. Vertical

displacement of top
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’Uo/’uO

r/h

Figure 13.6. Vertical displacement of origin
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x/h

X

Figure 13.7. Surface settlement

Figure 13.7 shows the actual settlement trough, for /h = 0.5 and v = 0. The dotted line shows the
shape of the settlement trough obtained from Sagaseta’s simplified solution (Sagaseta, 1987; Verruijt &
Booker, 1996), using a scale factor to let the maximum displacements coincide.

Figure 13.8. Radial stress at tunnel; r/h = 0.5

Figure 13.8 shows the radial stress at the tunnel boundary, for v = 0.5 and v = 0.0.

Figure 13.9 shows the apparent spring constants at the tunnel surface. This is the radial stress divided
by the local radial displacement. The figure applies to the case r/h = 0.5. This means that the ratio of
the covering depth d to the diameter D of the tunnel is d/D = 0.5, indicating a very shallow tunnel. In
this case the spring constant above the tunnel is significantly smaller than the average one.

Figure 13.10 shows the apparent spring constants for the case r/h = 0.3333, or d/D = 1.0. The
horizontal line above the figure indicates the location of the upper surface, considering the inner circle as
the location of the tunnel.

Figure 13.11 shows the apparent spring constants for the case r/h = 0.25, or d/D = 1.5. For this case
of a relatively deep tunnel the distribution of the spring constants is almost constant.

Figure 13.12 shows the total volume below the settlement trough, as a function of v and r/h. It
appears that this is always greater than the total ground loss, by a factor varying between 1 and 2.
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Figure 13.9. Springs for constant displacement; r/h = 0.5

Figure 13.10. Springs for constant displacement; r/h = 0.3333
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Figure 13.11. Springs for constant displacement; r/h = 0.25

AV/AV, 1.5

r/h

Figure 13.12. Relative volume change
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14. Uniform vertical displacement of the cavity boundary

The problem to be considered in this chapter is that the upper boundary of the half plane is free of
stress (as in all previous problems), and that along the boundary of the circular cavity a uniform vertical
displacement is imposed. This problem may be suggested by the application of a vertical force on a rigid
tunnel embedded in an elastic half plane.

The solution of this problem differs only slightly from that of the problem with a uniform radial dis-
placement (the ground loss problem), considered in chapters 11, 12 and 13. Because the upper boundary
is considered to be free of stress, the coefficients ¢ and dj, can be expressed into ay and by by the relations
(8.14) — (8.16). These relations are

Co = —EO — %al — %bl, (141)
Cp = _Ek - %(k + 1)CLkJrl + %(k - 1)&]@71, k= 1’ 2’ 3’ Tt (142)
dy =~y + 30k = Dby — 2k + Dbiys,  k=1,2,3,..., (14.3)

It may be noted that these relations have been derived under the assumption that the coefficient C' in
the boundary condition, see eq. (2.98), is zero. This implies that the resultant force on this boundary is
Zero.

If the coefficients ajx and b can be found, the determination of the coefficients c; and d from the
equations (14.1) — (14.3) is explicit and straightforward.

14.1 Inner boundary
At the inner boundary the displacements are now assumed to be

Uy + fuy = iU, (14.4)

where ug is a given constant, the prescribed vertical displacement at the cavity boundary.
The modified boundary condition (obtained after multiplication of the boundary condition by a factor
(1 = ¢o), in order to eliminate the singularity) is, compare (11.9),

G'(Co) = kT1(Co) — T2(Co) — T3(Co), (14.5)
where now
/() = (1~ Q)C(Go) = 201 — a0tz + ity) = 2ipsuo(1 — 00). (14.6)

Using the expression (11.16) for the sum of the three terms in the right hand side of (14.5), the boundary
condition leads to the equation

2i,uu0(1 —ao)=ag(k+1)
+Z (1 — o®)kag + (1 — o) (k + 1)axs1
—(@® + koMo + (1 + /Qaf%)bk]akafk

+Z (1—a®)(k — D)bg_1 + (1 — a?)kby,

—(a® + ka®)ag_1 + (1 + ka*¥)ag]a o™, (14.7)

From this equation the coefficients a; and by must be determined.
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14.1.1 Determination of the constants

By setting the coefficients of all powers other than 0 and 1 equal to zero, the following system of equations
is obtained, see the derivation of (11.21) and (11.22),

(1 —a®)(k+ Dagrr — (@ + ka2 by =
=(1—aHkap — (1 +ra My, k=1,2,3,.... (14.8)

1+ ke ap 1+ (1 —®)(k+ 1bpyr =
= (a® + ka®* )ay, + (1 — a®)kby, k=1,2,3,.... (14.9)

From these two equations the coefficients can be determined recursively, if the starting values a; and by
are known.

These starting values, a; and by, may be determined from the coefficients of the powers ¢® and o'.
This gives

(1 —a?)ay — (k + a?)by = 2ipug — (k + 1)ao, (14.10)
(1 —a®)by + (1 + ka?)ay = —2ipuga® + (k + 1)aag. (14.11)

The coefficient ag is still undetermined in this stage. It represents a rigid body displacement, which
may be related to the displacement at infinity. Its value will be determined from the condition that the
coefficients in the Laurent series tend towards zero for large values of k. This condition is thought to
imply that the stresses vanish at infinity.

It is assumed that all the coeflicients are purely imaginary, because of the symmetry of the problem.
Therefore we will write

ay = 2iuugpr, (14.12)
b = 2ipuugqy, (14.13)
cr = 2ipugry, (14.14)
dy = 2ipugsg. (14.15)

Equations (14.10) and (14.11) now give
(1—a®)p1 + (v +a?)g1 = =1+ (5 + 1)po, (14.16)
—(1=a®) g1 + (1 + ka®)py = [-1 + (k + 1)pola?. (14.17)

The solution of this system of equations is found to be

1
K+1°

P1 = q1=Dpo — (14.18)

Using these starting values the problem has been elaborated in a computer program, in which the last

remaining coefficient pg is determined such that the coeffciients g tend towards zero for kK — oco. This

appears to lead to the value
1

k+1

Po = (14.19)
All other coefficients then are zero. This solution represents a uniform displacement of the entire field,
which clearly satisfies all boundary conditions, as they have been formulated here: a uniform vertical
displacement of the cavity boundary, zero stresses on the upper boundary of the half plane, and vanishing
stresses at infinity.

This degenerate solution could have been formulated immediately, of course, but it is interesting to
observe that it is also obtained by the general approach used here.
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14.1.2 Conclusion

It must be concluded that the problem considered here has a degenerate solution, of a uniform rigid
body translation. This solution has little practical significance, because of the poor representation of the
behaviour near infinity. The stress field caused by a uniform vertical displacement of a rigid tunnel may
be approached more realistically by first considering the particular solution for a force in the interior of an
elastic half plane. This solution (by Melan) is known to have a logarithmic singularity in the displacement
field at infinity, and requires that a certain point in the field is considered to be fixed. This point can be
chosen at the depth of a practically rigid base layer. The displacements beyond that point, which will
approach infinite values at infinity, may be considered as irrelevant to reality. The displacements near
the point of application of the force will also tend towards infinity, but this singularity can be removed by
considering the force to be the resultant of a certain distribution of distributed stresses. This approach
will require a solution in two steps : a first step to represent the singular solution, and a second step to
balance the displacements or the stresses at the cavity boundary.
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15. The ovalization problem

Another example of a problem with a given displacement along the boundary of the tunnel is the case in
which an ovalization of the tunnel boundary is imposed. This problem has been considered and solved
by Strack, see Strack & Verruijt (2000) and Strack (2002). In this chapter this solution is reproduced,
using the general aproach to the second boundary value problem presented in Chapter 11.

As before, the complex stress functions ¢(¢) and ¥(¢) are again represented by their Laurent series
expansions,

$(Q) =ao+ Yy arct+ b, (15.1)
k=1 k=1

Q) =co+ Y e+ diCF, (15.2)
k=1 k=1

These series expansions will converge up to the boundaries || = 1 and |(| = a. The coefficients ay, b,
cr, and dj must be determined from the boundary conditions.

15.1 Outer boundary

The boundary condition along the outer boundary (|¢| = 1) is again that it is free of stress, which leads
to the relations

Co = —EO - %al - %bl, (153)
Cp = _Ek - %(k + 1)CLkJrl + %(k - 1)&]@71, k= 1’ 2’ 3’ Tt (154)
dy = = + 30k = Dbpor = 3k + Dbyyr,  k=1,2,3,..., (15.5)

One half of the unknown coeflicients have now been expressed into the other half. It may be noted that
for k = 1 the last two expressions each contain a non-existing term, but with a factor 0. If the coefficients
ar, and by can be found, the determination of c; and dy, is explicit and straightforward.

15.2 Inner boundary

At the inner boundary the displacements are supposed to be prescribed. The appropriate form of the
boundary condition is given by (2.95),

G = 2pu(uy +iuy) = k)(2) — 25 (2) — B2), (15.6)
where for plane strain
A+ 3u
= =3 —4v. 15.7
TTONT ] v (15.7)

and for plane stress

__BA+bp 3-v
3N +2n 14

(15.8)

The modified boundary condition, obtained after multiplication by a factor (1 — «o), is, by analogy with
(8.18),

G'(Co) = kT1(Co) — T2(Co) — T3(Co), (15.9)

where

G'(Co) = (1 = )G (Co) = 2u(1 — ao)(uy +iuy), (15.10)
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where (p = ao and

T1(Co) = (1 = Go)&(Co), (15.11)
w(Co) =

To((o) = (1 — ' 15.12

(Co) = ( C)w(<>¢>(<) (15.12)

T3(Go) = (1 = ¢0)tb(o)- (15.13)

The first term can be elaborated to the form
T1(Go) = ao + Y _(ar — ar—1)a¥o® + > " (by — bpyr)a FoF. (15.14)
k=1 k=0

And the sum of the second and third terms is

T5(Co) + T3(¢o) = —ao

+ Z [(1—o®)kar — (1 — a®)(k + 1)ar1 — be + a2bk+1]akafk
k=0

+3 (1= a®)(k = 1)be_1 — (1 — a?)kby + a2ap_1 — ag]a " o*, (15.15)
where by = 0, see (8.27).

15.2.1 Terms 1, 2 and 3
The right hand side of the expression (15.9) now is, with (15.14) and (15.15),

xT1(Co) — T2(C0) —T5(¢0) = ao(k + 1)

+Z (1 — o®)kag + (1 — o) (k + 1)aps1

—(® 4 k" Vop i + (1 + /Qof%)bk]aka*k

o0

+Z (1—a®)(k — D)bg_1 + (1 — a?)kby,

—(@® + ra®)ag—1 + (1 + ka®F)aya Fok. (15.16)

Note that in each of the series of terms only two levels of coefficients occur: £ —1 and k or k and k + 1.
It should also be noted that the first series of terms contains a common factor a*, and that the second
series of terms contains a common factor o,

15.2.2 The boundary condition for the ovalization problem

According to the modified boundary condition (15.9) the value of the expression (15.16) must be equal
to G'({o) = G'(ao). The precise form of this condition depends upon the nature of the prescribed
displacements. For the case of ovalization this function is (Strack, 2002)

_ iAkgk n i B, (15.17)
k=0 k=1
with
—2a, k=0,
A =ipug { 20%(2 — a?), k=1, (15.18)

B -a?)?[(k+1)(1-a?) —=3], k>2,
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and
By, = ipug o711 = a?)? k> 1. (15.19)

In these equations ug is the amplitude of the ovalization.
The two expressions (15.16) and (15.17) must be equal. This requires that the coefficients of like
powers must be equal.
For the coefficients of 0%, with k = 1,2, ... this gives
(1 —a?)(k+ Dars1 — (o + ka™2M)by g =
(1—abkay — (1 +rka Mo, +a By, k=1,2,.... (15.20)
And for the coefficients of o, with k = 2,3, ... this gives

(1 + IQOé2k)CLk =+ (1 — QQ)kEk =

(@® + ka*M)ap_1 + (1 — a®)(k — )by + ¥4y, k=2,3,..., (15.21)
or, replacing k by k + 1,
(14 ke ap 1+ (1 —®)(k+ 1bpyr =
(@® 4+ ko )ay, + (1 — a®)kby, + o1 Ay E=1,2,.... (15.22)

From the two equations (15.20) and and (15.22) the two coefficients ax11 and biy1 can be calculated if
ay, and by are known. This recursive process may start from k& = 1.

The starting values, a; and by, may be determined from the coefficients of the powers ¢® and ¢'. This
gives

(1 —a?)a; — (k+ a?)by = —(k + 1)ag + Ao, (15.23)
(1 —a?)by + (1 + ka?)ay = (k + 1)a’ag + aA;. (15.24)

The coefficient ag is still undetermined in this stage. It represents a rigid body displacement, which
may be related to the displacement at infinity. It is assumed that its value is to be determined from the
condition that the coefficients in the Laurent series tend towards zero for large values of k. This condition
means that the stresses are supposed to vanish at infinity.

If it is assumed, on the basis of a consideration of symmetry, that all coefficients are purely imaginary,
so that taking the complex conjugate corresponds to multiplication by -1, the solution of the system of
equations (15.23) and (15.24) is

(1 —a?Ap — (k+a?)ad;
(k+ D[+ (k—1Da?+a?]’

ayp = apg — (1525)
(1+ra?)Ag + (1 — a?) ad,y

L= A (he Dl o]

(15.26)

Thus the first two coefficients have been determined. The other coefficients can next be calculated
successively.

15.3 Calculation of the coefficients

It is assumed that all the coefficients are purely imaginary, because of the symmetry of the problem.
Therefore we will write, as in chapter 12,

ap = 2ipugp, (15.27)
bk = Ziuuqu, (1528)
cr = 2ipugr, (15.29)
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d = 2ipugsy. (15.30)
Furthermore the coefficients Ay and By, are now replaced by
Ay = 2ipug A", (15.31)
By, = 2ipugBja”, (15.32)
so that, with (15.18) and (15.19),
; k=
A =1 a3(2-a?), k=1, (15.33)
La2h=3(1 = a?)?[(k +1)(1 —a?) = 3], k22,

—Q

and

Bi=1a"'1-0a%? k>1. (15.34)

It is assumed that the coefficient py can be determined later. For the moment it is left as an unknown
parameter.

It follows from equations (15.25) and (15.26) that the first two coefficients p; and ¢; can be determined
from the equations

(1—a?4; — (k+ a?)As
k+ D[+ (k= 1a2+ o)

P1=po — ( (15.35)

_ 1+ ka?) Ay + (1 — a?) Az
D=0 DA+ (k—Da2 +ad]

(15.36)

The remaining coefficients py and gi have to be determined from the equations (15.20) and (15.22), which
give
(1 —a®)(k+ Dprs1 + (@ + ko ") =
=1 —aDkpr + (1 +ra P — By, k=1,2,3,.... (15.37)

(14 £ )pr — (1= a?)(k 4+ 1)gryr =
= (® + k> )p — (1 — kg + A, k=1,2,3,.... (15.38)

This system of equations can best be solved numerically. The form of the system of equations is not very
well suited for such a solution, however, because some of the off-diagonal coefficients become very large
if kK — oo, noting that o < 1. Therefore they can better be re-arranged and rewritten as follows,

(14 w® P )pr — (1= a?)(k + 1) gryr =
= (@® + k> — (1 — kg + Afq, k=1,2,3,.... (15.39)

(1= a®)(k+ 1) pri1 + (v + 0™ ) gpq =
= (1 —a®)ka®p, + (k + ®F)qp — Bia?*, k=1,2,3,.... (15.40)

Written in this form the terms remain finite when & — oo, and the terms on the main diagonal do not
tend towards zero.

The system of equations can now be solved in successive steps, starting from an assumed value of py.
It is postulated that the value of py must be determined from the condition that for very large values of
k the coefficients py must tend towards zero. Because all the coefficients depend linearly upon pg this
coefficient can now easily be determined by first assuming pg = 0, calculating the last term p,,, then
assuming pp = 1, again calculating p,, and then finally determining the correct value of py by linear
interpolation. It has been found that this works satisfactorily, provided that the number of terms (n) is
large enough.
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The coefficients 7 and s can be determined using the relations (11.3) — (11.5) and (15.29) and
(15.30). This gives

o =po— 3P1 — 51, (15.41)
Tk =4k — %(k + 1)pk+l + %(k - 1)pk*15 k= 15 25 35 SRR (1542)
sk=pk — 5k +Daerr + 2 (k — Dagr1, E=1,2,3,.... (15.43)

All the coefficients now are known, so that the solution can be further elaborated.
Finally, all stresses and displacements can be determined using the equations that were given in
Chapter 12.
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